

FREEDOM OF CREATIVITY: COATINGS & ADDITIVES FOR ENHANCED CASTING PROPERTIES

H. Kakac, Dr. R. Stötzel, C. Koch, I. Yilmaz

TRENDS & CHALLENGES IN THE FOUNDRY MARKET

- ✓ Downsizing in the automotive industry require more precise casting dimensions
 - Core package
 - Low layer or no coating
 - Reproducible coating layer
- ✓ Productivity will be one important driver for competitiveness
- ✓ More environmental pressure are forced on foundries
- ✓ Energy resources are limited, and will have an effect on the casting costs

AGENDA

- ✓ Why do we need sand additives?
- $\checkmark\,$ How do the sand additives work
- ✓ Properties of various sand additives
- ✓ Experiences and practical results

WHY DO WE NEED SAND ADDITIVES?

- To avoid casting defects: such as veinings, linked to the sand expansion, lead to rework and often to scrap
- To keep the process stability (irregularities in process) Considering many special casting conditions (geometry, temperature, material grade, etc.), the properties of molding material, binders and core coatings are not enough to guarantee process-reliable and profitable casting production

 ✓ Cost Saving: Omission or reduction of special sands (chromite...) Casting without coating process

WHY DO WE NEED SAND ADDITIVES?

- ✓ During the conversion from α -SiO₂ to β -SiO₂, the sand grains expand by approx. 1.3%.
- This leads to enormous stress inside the core as well as at its surface.
- Cracks form at the core surface which fill with liquid metal, resulting in casting defects commonly known as veining.

SPECIAL SAND AND MINERALS

Chromite

J-Sand

Zircon sand

Advantages:

- Very efficient against casting defects
- Low gas emissions

Disadvantages:

- Very high material costs
- Effects on green sand
- Disposal cost

SPECIAL SAND AND MINERALS

COMPARISON OF DIFFERENT SAND ADDITIVES

Organic

Hybrid

Inorganic

COMPARISON OF DIFFERENT SAND ADDITIVES

HOW DO SAND ADDITIVES WORK?

- The organic components will burn, carbonize and soften in the pouring process.
- The sand grains are thus able to expand into the recently formed spaces

HOW DO SAND ADDITIVES WORK?

- The minerals develop a pasty transition phase which acts as a buffer against silica expansion and absorb more stress before cracking
- Negative thermal expansion

REQUIREMENT PROFILE

- ✓ Reduction of
 - Expansion defects (e.g. veining)
 - Deformation
 - Penetration
 - Burn in
 - Gas defects
- ✓ Low addition rate
- ✓ Neutral odor
- ✓ Low dust formation
- ✓ Compatibility with coating
- ✓ Strength profile according to the application (neutral or as a breakdown promoter)
- \checkmark Low gas and emission evolution
- ✓ Dimensional accuracy
- ✓ Low core box staining
- ✓ Economical advantage

REQUIREMENT PROFILE

ESA 1 with chromite sand and silica sand

Stepcone test⇒ partial coated & uncoated

100 pt chromite sand no additive Σ 1.5% CB-Binder

Result:

heavy penetration

50 pt chromite sand 50 pt H32 + 5% ESA 1 Σ 2.1% CB-Binder

Result:

Better surface

50 pt chromite sand 50 pt F33 + 5% ESA 1 Σ 2.1% CB-Binder

Result: Almost clean surface

Standard sand mixture:

100% Special sand,0.75% Binder per part

Probemischung:

50% Special sand,50% Silica sand,4% ESA 40.70% Binder per part

Possible costs reduction 6 digit € saving

Cylinder head

Standard recipe:

60% Special sand mixture 40 % silica sand 5 % Additive

Trial:

100 % silica sand 3 % ESA 2

Cylinder-head, water jacket core:

Standard recipe: 100 % Special sand 1,5 % organic additive

Trial: 50 % Silica sand 50 % Special sand 4 % ESA 3

Thyssen Krupp Waupaca – Tell City, IN

Brake rotor cores:

1.5% ESA 5 addition vs. 4% normal addition

Casting

- 100 castings
- Alternated on line with production cores to ensure same conditions

Furan warm box cores converted to new additive August, 2010

Continuing to operate at low additive levels

No increase in veining

No production issues

Brake Disc:

Standard recipe: 100 % Silica sand H 32 3,0 % Additive (organic) coated

Now: 100 % silica sand H 32 2 % ESA 3 coated

Portuguese sand 65/70 AFS + 1.7% CB Binder + 3% ESA 1 uncoated Previous practice: IPA/graphite coating

Previous 2,4 % additive, coated Now 2,4 % ESA 3, uncoated

Center bearing, Ductile Iron, 125 kg casting weight

Comparison SiMo-Manifold ⇒ coated and uncoated

100 T silica sand blend (H32/H33)

Σ 1.2% CB-Binder - coated

100 T silica sand blend (H32/H33) +5% ESA 1 Σ 1.6% CB-Binder - uncoated

ENHANCED COATINGS

HOW ARE COATINGS DESIGNED?

TYPES OF COATINGS

Refractory	Density		Morphology	Chemical	Application
	g/cm ³	<u>Ч</u>		Iormula	
Zircon- silicate	4,6	2200	angular	ZrSiO ₄	Steel
Corundum	4,0	2050	angular	Al ₂ O ₃	Steel
Magnesite	3,7	2800	angular	MgO	Manganese steel
Mullite	3,16	1700	angular	3 Al ₂ O ₃ 2 SiO ₂	Iron
Graphite	2,3	3700	Plates	С	Iron, Aluminium
Kaolinite	2,65	> 1700	Plates	$AI_2((OH)_4/Si_2O_5)$	Iron
Pyrophillite	2,8	1600	Plates	Al ₂ ((OH) ₂ /Si ₄ O ₁₀)	Iron, Aluminium
Talc	2,8	> 1000 max. 1430	Plates	Mg ₃ ((OH) ₂ /AISi ₄ O ₁₀)	Iron, Aluminium
Mica	2,85	> 900	Plates	KAl ₂ ((OH) ₂ /AlSi ₃ O ₁₀)	Iron, Aluminium

THE IMPORTANCE OF RHEOLOGY

THE IMPORTANCE OF RHEOLOGY

MIRATEC MB Types

Casting	Fettling		Savings
	S	Miratec	
3-cyl. head SISU	8.57 min.	5.27 min.	38.5%
4-cyl. block DEUTZ 2009	34.00 min.	27.97 min.	17.7%
4-cyl. head DEUTZ 2009	13.87 min.	7.44 min.	46.4%

Casting	Fettling		Savings
	S	Miratec	
3-cyl. head SISU	8.57 min.	5.27 min.	38.5%
4-cyl. block DEUTZ 2009	34.00 min.	27.97 min.	17.7%
4-cyl. head DEUTZ 2009	13.87 min.	7.44 min.	46.4%

WASHING OR NEW CORE WASH?

- ✓ Millennium: IT Problem?
- \checkmark Metal bearings are banned to be used in vehicles.
- ✓ The alternative materials don't have emergency running properties
- $\checkmark\,$ The oil filters have only a limited capacity
- Therefore: Residual contamination requirements are restricted to less than 300 to 1000 mg/part, depending on the car company

WASHING OR NEW CORE WASH?

COATINGS TO PREVENT ADHESION

- Formation of liquid FeO_X-Phase
- Scarred surface with holes
- Reaction layer and products
- Expanded structur

COATINGS TO PREVENT ADHESION

1 flaky

2 powdery

CORE PACKAGES

MIRATEC[®] TS Types

Assumption: OPTIMAL coated cores – independent of geometry

How does it work?

Casting surface before:

Casting surface with MIRATEC TS:

SUMMARY

- \checkmark With the New ESA's sand properties are enhanced:
 - Elimination of special sands
 - Reduced addition rates
 - Elemination of the coating process especially on Ductile Iron castings
- ✓ Novel MIRATEC[™] TS Coatings provide defect-free castings with the required minimum residue for automotive castings

THANK YOU FOR YOUR ATTENTION

Christian Koch, Ismail Yilmaz ASK Chemicals GmbH, Reisholzstraße 16-18, D 40721 Hilden Tel.: +49-211-71103-24 info@ask-chemicals.com www.ASK-chemicals.com

ASK Chemicals 2018