

# **GE Aviation - TTC**

# TARLA - Turkish Additive Research Lab

Onur Onder Engineering Manager GE Aviation

# Outline

Additive at GE Aviation TTC Additive History Lab capabilities Projects & Ongoing Studies



## **Turkey Technology Center**

GE Aviation Engineering. A partnership between GE Aviation & GE's joint venture company TEI. Employs 400+ engineers with sound technical depth. Attracts and hires Turkey's best engineering talents from highest rated engineering schools. Delivers timely and reliable solutions for **design**, **manufacturing**, **Digital** and **software** work scopes both for commercial and military engine lines.



Next to TUBITAK\* Campus Located at Free Trade Zone



Diverse Research Labs \$9M Development Hardware





# Supply chain shift in progress

SE)

© 2017 General Electric Company - All rights reserved

CONCE

THO DALL

## What is additive manufacturing?

#### **3D PRINTING**

Additive manufacturing, also knows as 3D printing, is a process that creates a physical object from a digital design file.

Additive manufacturing enables engineers to design parts, systems and shapes once thought impossible to make.

Additive manufacturing allows for complex design geometries, making products that are lighter, stronger and more efficient, revolutionizing products in many industries.





## GE's additive journey ... so far





LEAP is a trademark of CFM International, a 50/50 JV between GE and Safran Aircraft Engines Sour

Source: GE Aviation

## Then a system ... Advanced Turboprop

Combustor test schedule reduced from **12 months** to **6 months** 











## TTC's additive journey ... so far



# Capabilities

## Additive Capabilities at TTC

| Design                         | Process              | Post Process    | <b>Characterization &amp; Test</b> |
|--------------------------------|----------------------|-----------------|------------------------------------|
| Topology                       | 2 x Concept Laser M2 | Vac Furnace     | Metal Lab                          |
| Optimization                   | DED Powder           | Powder Evac     | SEM                                |
| Cost Modeling                  | DED Wire             | Bluelight       | Tensile / Compression              |
| Design for Additive            | WAAM                 | Machining / EDM |                                    |
| Ansys / Optistruct /<br>Magics | Polyjet              |                 |                                    |









# Available metal additive options

|  |            | Process                                |       | Form              | Heat Source   | Speed | Precis | Size |
|--|------------|----------------------------------------|-------|-------------------|---------------|-------|--------|------|
|  | Powder Bed | DMLM<br>Direct Metal Laser Melting     | L     | Powder Bed        | Laser         |       |        |      |
|  |            | EBM<br>Electron Beam Melting           | EB    | Powder Bed        | Electron Beam |       |        |      |
|  |            | LPF<br>Laser Powder Forming            | L     | Powder Deposition | Laser         |       |        |      |
|  | sition     | Cold Spray                             |       | Powder Deposition | Momentum      |       |        |      |
|  | Depo       | EBFF<br>Electron Beam Free Form        | EB    | Wire              | Electron Beam |       |        |      |
|  |            | Hot Wire                               | TIG/L | Wire              | TIG/ Laser    |       |        |      |
|  | idation    | MIM/SNS HIP<br>Metal Injection Molding |       | Binder Injection  | Consolidation |       |        |      |
|  | Consol     | Binder Jet                             |       | Binder Jet        | Consolidation |       |        |      |

# **Projects and Activities**

## TTC Additive Research Lab - TARLA



## Turkish Additive Research Laboratory Projects

Proof of Concept Studies

Geometry and Technology Development Activities for Characteristic and Part Architectures

Research and Development of Material Feed Additive Manufacturing Technologies

Research and Development of Powder Bed Fusion Additive Manufacturing Technologies and Additive Manufacturing Materials







## High level additive design process

### Requirements

What are your deliverables? What are the limits?

### **Conceptual Design**

Start with the limits of your product and design the shape from there

### **Process Selection**

Choose the additive process that will enable your concept

### **Design for Productibility**

Refine the design to take full advantage of the process

### **FastWorks**

Design, test, learn ... iterate... to meet or exceed requirements

- Complex castings/geometries
- High labor parts
- Fabricated assemblies
- Part Consolidations
- Integrated systems
- Durability Improvements
- Weight reductions
- Performance improvements

#### Cost should be influencing your decisions throughout the process



## Additive part selection – drive to a common metric

#### **Selection criteria**

- Machine capacity and material
- Cost and weight
- Durability
- Performance
- Packaging

#### Limits on part integration

- Assembly
- Maintainability
- Material incompatibilities
- Repair

#### What it takes to succeed

- Clear business case
- Monetized metrics (derivatives)
- Real benefits the customer will pay for
- Strong, representative life cycle cost analysis



## Directed Energy Deposition

### Slicing and Toolpath Programming Software

### **Blade Repair**

- Huffman System
- Slicing and Toolpath Programming

### Hybrid AM Demo: T700 TMF

• In718

### **Metal Leading Edge**

- In718 & Ti-6-4
- Robotic Laser Powder Deposition System
- Full Size 42" MLE, Build Parameters, Metallographic Analysis









42" Ti64 MLE built at TTC under IMPALA program



## Hybrid AM Demo: Deposition of main body and flanges



**Turbine Mid-Frame** 



Near Finished Component with 1.5:1 Buy to Fly vs. Up to 10:1



Laser Powder Deposition Fine Features



Finished Shell (Turning)

Hot Wire Shell

# Double Gyroid Lattice Structure Compressive Testing and Characterization

Barış Kavas, Dr. Şeref Sönmez, Dr. Evren Yasa

- Manufacturing of the structure is lately enabled with varying design parameters by developing additive manufacturing technologies.
- ✓ Surface is periodic and fully continuous in all directions: Idially, no excessive kt is generated through the structure
- ✓ isotropic: beneficial where the loading conditions & directions are uncertain
- Proven to have better specific strength against other popular lattice structures
  Sample size: 24 mm



Unitcell size: 12 m

Unitcell size: 8 mm Unitcell size: 6 mm



Effect of the unitcell size as well as the manufacturing process on the mechanical properties under compressive loading conditions are documented.



## Vibration characteristics of double gyroid lattice structures

Uğur Şimşek, Barış Kavas, Dr. Polat Şendur

**<u>Aim</u>**: This paper is aimed at evaluating the dynamic performance of gyroid structures made of HS188 produced by direct metal laser melting (DMLM).

#### Method:

Frequency response prediction of a finite element-based model of the gyroid sandwich structure is first validated against the modal testing using Dewesoft software in terms of natural frequencies, mode shapes and damping characteristics.

Subsequently, four gyroid structures with different shell thickness are analyzed to understand the effect of shell thickness on the dynamic characteristics of gyroids.

The geometry, which provides the best dynamic performance, was printed to validate the findings from the parametric study. In addition, the performance of the optimum structure is compared to the bulk structure with same mass.





## Additive DMLM Film Cooling Holes Cooling Efficiency

Ezgi Balkas, Dr. Nuri Solak, Alican Çelik

#### **Objective and Test Setup**

Pressure Sensitive Paint imaging application for film cooling efficiency on flat plates.

Additive Manufacturing & EDM will be compared to evaluate relation between surface roughness & film cooling efficiency.





## (ge)

© General Electric Company – All rights reserved

#### **Test Outcome**

| Coupon Name             | Diameter | Material | Injection<br>Angle | Angle of<br>Hole | Manufacturing<br>Method | Build<br>Direction     |
|-------------------------|----------|----------|--------------------|------------------|-------------------------|------------------------|
| 1X - CoCr - EDM         | 0.1 inch | CoCr     | 90°                | 35°              | EDM                     | N/A                    |
| 1X - CoCr - V -<br>DMLM | 0.1 inch | CoCr     | 90°                | 35°              | DMLM                    | 90° wrt Built<br>Plate |
| 1X - CoCr - A -<br>DMLM | 0.1 inch | CoCr     | 90°                | 35°              | DMLM                    | 35° wrt Built<br>Plate |





