GREATER EFFICIENCY, LOWER COSTS AND FASTER BUSINESS GROWTH THROUGH 3D SAND PRINTING

Aldo Randazzo, Head of Customer Application & EAC EMEA – Sand Printing

20.09.2024

About ExOne

Sand binder jet 3D printing leadership for 25+ years

History

- Founded 1995
- Operations in Europe, Asia, and the Americas
- Acquired by Desktop Metal in 2021

We sell machines and services

- Machine engineering and manufacturing for sand and metal printers
- Sand molds and cores on-demand
- High density metal parts on-demand


Industrial markets

Foundries | Automotive Aerospace | Defense | Medical Energy | Heavy Equipment | Architecture | Construction

ExOne is part of #TeamDM on a mission to deliver production-capable 3D printers, materials, and applications

The World's Most Trusted Sand 3D Printing Systems


Benefits of sand 3D printing

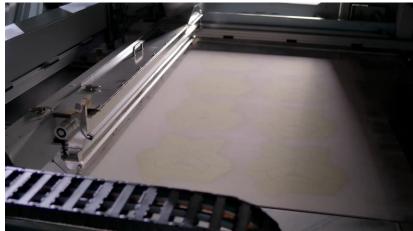
S-Max[®] Basic printing setup

- Double job box option
- For continuous 24/7 production
- Ideal for all cold hardening binder systems
- All-new automated industrial printhead
- Jobbox on motorized roller conveyor

Technical Specifications

Job box (L x W x H):	1,800 × 1,000 × 700 mm (70.9 × 39.4 × 27.6 in)	
Build volume	1,260	
Build rate *	up to 125 l/h	
Layer height **	0.2 to 0.5 mm	
Dimensional accuracy	+/- 0.5 mm	

** Depending on material. *** Depending on part size and geometry (0.1% of part size)


*Depending on layer height.

Introduction Binder Jetting

Binder Jetting Furan Process

Video

Step 01

Apply sand

The recoater first

the iob box.

applies the first layers of

sand to the bottom of

Step 02

The printhead

activated sand.

Step 05

Steps 2-4 will be

layer of the whole

repeated up to the last

Repeat

printjob.

Apply binder

selectively prints a first

layer of binder onto the

Step 03 Lower platform

The construction platform in the Jobbox is lowered by one laver height

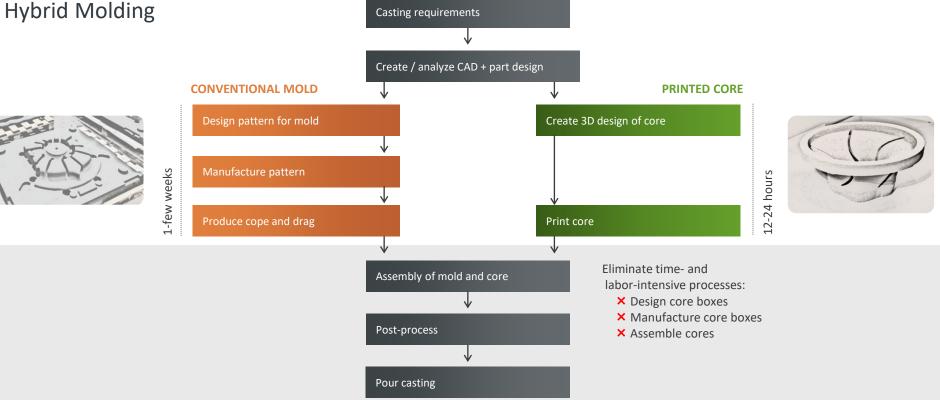
Apply sand

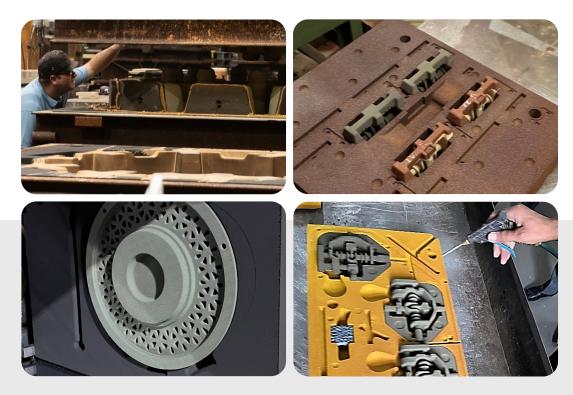
The recoater applies another layer of activated sand.

Step 06 Complete

The loose sand is removed from the job box and the printed parts are removed. A subsequent heat treatment is necessary for certain binder systems.

Step 04




REASONS FOR USING THIS TECHNOLOGY

Hybrid Molding

- The complex internal geometry of a casting usually presents the biggest challenge in production
- Large sand volumes can often be produced easily and economically using traditional manufacturing processes
- Small to medium sized
 complex parts are highly
 suitable for production using
 sand printers and enable
 production from very small
 quantities to series production

Core consolidation / reduction of the core package

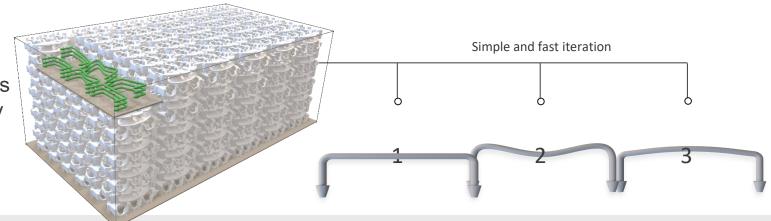
- Core consists of several individual parts and must be assembled manually with core glue
- Increased risk for gas defects by more organic amount due to core glue
- Formation of flash on the contact surfaces on the casted part which must be removed in a time-consuming and cost-intensive process

Quality Improvement by core consolidation

Impeller Core via Core shooting machine

- Core consists of several individual parts and must be assembled manually with core glue
- Increased risk for gas defects by more organic amount due to core glue
- Formation of flash on the contact surfaces on the casted part which must be removed in a time-consuming and cost-intensive process

Printed Impeller on S-Max Printer

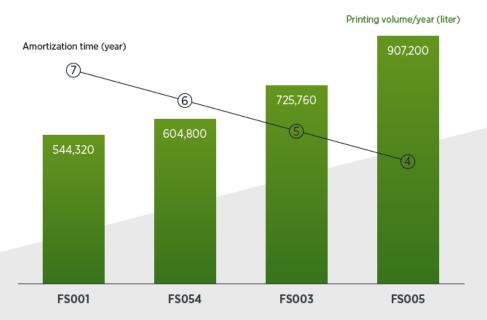

- Single core with closed surface which can be inserted directly into the mold
- No risk for casting defects cause by additional gas
- No or significantly reduced reworking on casted part necessary

Fast go to market by fast development or PoC

Produce different designs in one step only by changing CAD files

Digital manufacturing process

Note

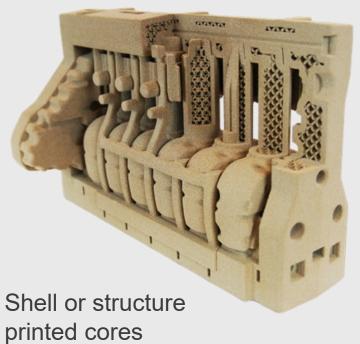

Speed up production by changing print medium

Calculation example of material printing performance on the S-Max Pro system with furan binder

	FS001	FS054	FS003	FS005
Printing time [hh:mm]	14:02	12:18	10:23	7:55
Build height [mm]	700	700	700	700
Layer thickness [mm]	0.28	0.32	0.38	0.50
Total layers	2,500	2,188	1,842	1,400
Seconds/shift	20	20	20	20
Job boxes/week	9	10	12	15
Packages/Job box	30	30	30	30
Packages/week	256	293	347	454
Packages/year	12,228	14,064	16,656	21,792
Performance	100%	114%	135%	177%

Basis of calculation

5 working days - 15 minutes job box change - 120 hours working week - 48 weeks



Cost reduction by less material resources

Topology optimization

- Less casting material needed
- Reduced CO² footprint

- Less Chemistry in printed sand volume means also less risk for gas defects
- Improved desanding properties

Summary

Benefits of binder jetting technology

Hybrid mold

unites traditional manufacturing with modern production technology.

Simplify

processes by avoid unneccessary post process steps

Quality

Improvement by generating better surfaces through less flash lines

Speed up

Production by adopting process time on casting requirements

Lower costs

by reducing waste, consumables, process steps and related Labour costs & CO² footprint

Aldo Randazzo

Head of Customer Application & EAC EMEA – Sand Printing +49 151 61747606 <u>Aldo.randazzo@exone.com</u>