

29 September -1 October / 29 Eylül - 1 Ekim 2016 TÜYAP Fair, Convention & Congress Center, İstanbul

8. Uluslararası Döküm Kongresi / 8th International Foundry Congress by TUDOKSAD Academy In conjuction with Ankiros / Annofer / Turkcast fairs

«Düşük Basınçlı Sementasyonda Enerji Verimliliği»

«Energy Efficiency: Lpc vs Atm Carburizing Or Modultherm vs Sqf»

Gerald Hiller (ALD Vacuum, Meta-Mak)

3.Oturum: Döküm Teknolojileri Demir&Çelik 3rd Session: Casting Technologies Iron&Steel

Oturum Başkanı/Session Chairman: Prof. Dr. Cahit Ensari (Yalova Üniversitesi)

Oturumlarda yer alan sunumlar 3 Ekim 2016 Pazartesi tarihinde akademi web sayfasına (akademi.tudoksad.org.tr) yüklenecektir.

Welcome to ALD Vacuum Technologies GmbH Dedicated People for Demanding Jobs

Energy Efficiency: LPC vs. atm. carburizing or ModulTherm vs. SQF

Ankiros, Istanbul 29th – 01st September/October 2016 in İstanbul

Energy Efficiency: LPC vs. atm. carburizing or ModulTherm vs. SQF

Gerald, Hiller, ALD Vacuum Technologies GmbH, Hanau, Germany

- 1. Motivation
- 2. Introducing furnace systems
- 3. Batch for energy efficiency comparison
- 4. Required energy for the heat treatment process
- 5. Energy fluxes in the furnace chamber
- 6. LPC: Further potential for energy saving
- 7. Optimized fixturing for load charging
- 8. Enhancing energy efficiency with accelerated processes
- 9. Energy efficiency thru flexibility
- **10. Further advantages of LPC**
- ₃11. Summary

1. Motivation

Approximately 30 billion Euros (\$39bil) per year of energy costs for operation of industrial furnaces in Germany

More than 40% of the total energy used in the German industry is consumed by thermo-processing plants¹

(in 2005: 270 TWh = energy-consumption of 14 million households)

European climate and energy policy until 2030:

- increase of energy efficiency by 25%
- reduction of greenhouse gas emissions by 40% compared to 1990
- renewable energy share of at least 27%

Energy efficiency = CO_2 convert to 1kWh electricity \rightarrow 460 g CO_2 ²

¹ source: Beneke et al: VDMA-Leitfaden "Energieeffizienz von Thermoprozessanlagen"; VDMA Thermoprozesstechnik, 2011 ² http://www.sunearthtools.com/tools/CO2-emissions-calculator.php

1. Motivation

Hurriyet: Climate action plan, Paris December 2015

[...] Turkey's dependence on coal is increasing. The "Coal Report" prepared by Sabanci University's Istanbul Policy Center has shown that with coal occupying a significant place in our energy policies, a climate policy toward the decreasing of greenhouse gasses has become impossible.

Both in Turkey and in the world, civil societies are more focused on the issue than governments.

http://www.hurriyetdailynews.com/the-paris-conference-and-turkey-.aspx?pageID=449&nID=91901&NewsCatID=402

Energy efficiency = CO2 convert to 1kWh electricity \rightarrow 459 g CO2*

* http://www.sunearthtools.com/tools/CO2-emissions-calculator.php 5

2. Introducing the furnace systems

Furnace system ModulTherm LPC

Furnace system Seal Quench atm. carb

3. Batch for energy efficiency comparison

Assumption for comparison:

Batch get pre heat up to 400 °C

Example for process comparison

- **Only carburizing process**
- Quenching or any post treatments are not part of consideration
- Standard furnaces

500.000 2nd gears

- Automobile 2nd gear OD 120 ID 35 H 37
- Material: 20MnCr5 •
- CHD = 0,5 + 0,5 mm 550HV

Heat treatment Specification

Core Hardness > 300 HV10

Production Specification

Annual production volume:

= 167 **min**Tray • Recipe time at 970 °C Fixture material: Mancellium or HR23 (48Ni-28Cr-05W)

• Expected life time: = 24 Month

- Gross weight • Net weight

- Fixture weight
- Ratio Gross/Net weight

- Load weight Number of gears per batch = 352 pcs
- 600 x 750 x 1000 mm [w x h x l]
- Furnace / Load configuration

Material: 20MnCr5

CHD = 0,85 mm 550HV

Batch in ModulTherm (LPC)

Batch in SQF (atmosphere)

• Expected life time: 18 Month

4. Required energy for the heat treatment

Energy calculation SQF

- Q = heat quantity [kwh]
- c_p = spec. heat capacity of steel 0.6 [$\frac{kJ}{kg} * {}^{\circ}C$]
- ΔT = temperature difference [°C]

Fixture/Gears

Q = c_p × m ×
$$\Delta$$
T
Q = 0.6 $\frac{kJ}{kg}$ * °C × 1,296 kg × 910 °C = 707,616 kJ / 3,600 = **197 kw**h

Idle lost calculation

 $Q_A = Idle lost [kwh]$ t = time in [h] $Q_V = standby power [kJ]$

Q_A = t × Q_V Q_A = 540 min/60 h * 210,000 kJ = 1,890,000 kJ / 3,600 = **525 kwh**

Total energy consumption load/SQF = 197 + 525 = 722 kwh

Energy calculation ModulTherm

Fixture/Gears

Q = 0,6 $\frac{kJ}{kg}$ * °C × 655 kg × 950 °C = **373.350 kJ / 3600 = 104 kwh**

LPC idle lost			
	t [min]	Qv [kW]	QA [kWh]
Convection heating	60	38	38
Vacuum heating	20	27	9
LPC	52	34	29
Final diffusion	35	27	16
	167		92

Total energy consumption load/MT = 104 + 92 = 196 kwh

Energy comparison of one load

	MT	SQF
Gross weight kg	655	1298
Q _{sum} kWh	195	722
Energy kWh/kg	0,2982	0,5567
	-46%	

Production comparison

	MT	SQF	
Load Volume	0,45 m³	1,01 m³	
Load mass gr/net [ratio]	655/517 Kg [1,27]	1298/779 Kg [1,67]	
Annual production	500.000 2nd gears		
Gear / batch	352	528	
Batch / a	1420	947	
Complete Carb. time h	3954	8523	
Number Furnaces*	0,59 1,27		
*6702 h/a	Factor 2,15		

Complete Project Volume of a 6 speed Dual Clutch gear box:

8 gears + 4 shafts = 12 Treatment Chambers in ModulTherm or 26 SQF

Energy consumption [kWh] 500 000 gears per annum

750.000				
700.000 650.000 600.000	Energy cost per annum: Considering 0,24 TRL/kwh ModulTherm = 66.788 TRL / a [20.239 €]		Total 683,318 kWh	
500.000	SQF= 163.996 TRL / a [49.695 €]CO2 saving= 185,9 t / a*		-	
450.000			497.159	
400.000			-	
350.000	Total		-	
300.000	278,287 kWh		_	
250.000			-	
200.000	130.948		-	
150.000	31.013		74.684	
100.000	116.326		111 475	
50.000				
-	LPC [kWh]		SQF [kwh]	
	per	Year		
Idle lost	130.948		497.159	
Fixture	31.013		74.684	
Gears	110.320		111.475 U	tp://www.sunearthtools.com/tools/CO2

Wh∗

5. Energy fluxes in the furnace chamber

Energy fluxes ModulTherm (LPC)

Vacuum heat treatment systems: indirect resistance heating with graphite heating elements (heat-transfer by radiation and convection)

6. LPC: Further potential for energy saving

High temperature - case hardening carbon diffusion = f (T)

 \rightarrow 60 % reduction of cycle-time for the process step "carb. & diffusion"

High temperature – LPC

Example 2nd Gear: 20 MnCr5 CDH = 0,85 mm

Low pressure carburizing, CD 0,85 mm; 20 MnCr5			
LPC Temperature	970 °C	1050°C*	6000
Heating (convective+vacuum)	80 min	90 min	
Carburizing	52 min	6 min	
Diffusion	35 min	33 min	
Total recipe time	167 min	129 min	
Saving	- 38 m	in (22%)	

*Fine grain stable material required

7. Optimized thermal insulation

Idle power in a vaccum furnace at 950° C and 0,05 mbarabs Nitrogen

Increased energy efficiency with optimized insulation

	Standard	Optimized	Comment
Insulation	40mm Hardfelt- Graphite + 40mm Ceramic fibre	20mm Hardfelt-Graphite + 100mm Ceramic fibre	
Idle power per TC	30,8 kW	19,2 kW	950°C, Vacuum
Energy consumption per a and TC	206.360 kWh/a	128.640 kWh/a	6.700 h p.a.
Saved energy per a and TC	-	77.720 kWh/a	
Saved energy cost per a and TC	-	18.652 TRL/a [5.652 €]	Electricity cost 0,24 TRL/kWh [0,07 €/kWh]
Cost saving for complete MT line with 8 TC	-	149.216 TRL/a [45.218 €]	ModulTherm- System with 8 BK
Estimate CO2- Reduction per ModulTherm-System	-	509,8 t CO2/a	0,46* kgCO2/kWh *

8. Optimized fixtures for load charging

Comparison CFC- / cast steel fixturing

(Data for one fixture-tray)

CFC (carbon reifnorced carbon)

Material

Weight of the tray

spec. heat capacity

Energy needed to heat up to 1000° C

CFC

1 kg 1,8 kJ/kgK **1.764 kJ (21%)**

Cast steel (1.4818)

12 kg

0,7 kJ/kgK

8.232 kJ (100%)

CFC fixture: reduced cycle time

9. Energy efficiency thru flexibility

Energy efficiency thru flexibility

Reaction on production demands

ModulTherm: Heat up 1 hr – cool down 8 hr* * Energy not required, TC is off

Summary

- Enhancing energy efficiency is of great importance
- LPC/vacuum furnace is energy efficiency process/heat treatment equipment
- Optimized thermal insulation and optimized fixtures to improve energy efficiency
- When production is only partly needed, ModulTherm react fast on changes
- Highest production flexibility with a Vacuum furnace short reaction time on demands of production
- Energy efficiency is enhanced significantly by accelerated processes such as "High temperature – LPC"

Further advantages of LPC

Advantages in Process

- No surface- and intergranular oxidation
- Different CHD, different process at same time
- High case depth, surface- and core hardness uniformity

Advantages in Environmental

- No Co2 generated at the H/T
- Waste disposal of quenching oil is not required
- Energy management system for automated start and shutdown of the plant

Advantages in Manufacturing

- H/T is part of the manufacturing
- Low logistic effort
- Control of distortion
- Less machine/straightening operations
- Separate building not necessary
- Extendable according ramp up curve
- Flexible in production
- High grade of automation → documentation, manpower
- Post washing/blasting not required
- Low maintenance efforts
- Maintenance during production
- LPC reduce the manufacturing cost (TCO)

Thank you