

«Refrakter Esaslı Boyaların Kullanımı ve Döküm Hatalarına Etkileri»

«Coating Application As A Source of Errors At The Foundry»

Amine Serghini (Metko HA)

4.Oturum: Döküm Teknolojileri Kalıp

4th Session: Moulding Technologies

Oturum Başkanı/Session Chairman: Bülent Şirin (Componenta Dökümcülük Tic. San. A.Ş.)

Oturumlarda yer alan sunumlar 3 Ekim 2016 Pazartesi tarihinde akademi web sayfasına (akademi.tudoksad.org.tr) yüklenecektir.

Coating Application as a Source of Errors at the Foundry 8th International Foundry Congress - Ankiros

Introduction

Veining Defects

Metal Penetration

Scab Defects

Influencing Factors

- Preparation of the coating
- Viscosity / Efflux time
- Temperature of the coating
- Cleanness
- Moulding system
- Refractoriness of the coating

What are the settings for the optimum properties of the coating to avoid casting defects?

Influencing Factors - Preparation of the coating

- Delivery of the coating in different kinds of containers
- Settling of heavy refractory materials during transport and storage of the coating
- Therefore first:
 - stirring and homogenizing the undiluted coating
- Thereafter:
 - filling of coating in the preparation container / dipping tank
 - diluting of coating

Purpose: Homogeneous quality of the coating

Influencing Factors - Problems of Preparation

- Bent or missing propeller
- Wrong direction of rotation (correctly: clockwise)
- Unsuitable mixer (wrong dimensions, e.g. shaft too short)

Reduced stirring power

Influencing Factors - Problems of Preparation

- Mixing times too short
 - Uneven Mixing
 - Uneven application of the coating
- Recommendation: approx. 1-2 hours of continuous operation at containers (1000 litres)
- Then: Adjust mixer for intermittent operation (e.g. 10 min per hour)

Influencing Factors - Viscosity / Efflux time

- Layer thickness affects protection against casting defects
- Dilution affects the layer thickness
- Matt time controls drops and runners

Dilution 100g Arkopal A with water [g]	Weighted Density [g/ml]	Spindled Density [°Bé]	Efflux Time 4mm [g]	Layer Thickness wet [µm]	Matt Time [s]	Solid Content [%]
[9]	19,]		[9]	[k]	[°]	[,.]
37	1,263	38	13,2	350	96	33,7
40	1,258	35	12,9	325 – 350	88	33,3
44	1,249	33	12,6	325	77	32,3
49	1,239	32	12,2	300	61	31,3
58	1,223	29	11,8	275 - 300	57	29,4

Influencing Factors - Viscosity / Efflux time

- Efflux time too low -> Low layer thickness
 - Risk of casting defects
 - Veinings
 - Metal penetration
- Efflux time too high -> High layer thickness
 - Bad application properties
 - Formation of drops and runners
 - Wall thicknesses too thin

Regular control and documentation of the coating

Influencing Factors - Temperature

	Tempera- ture of the coating	Solid Content at 12,5 s	Tempera- ture of the core	Applica- tion Weight [g] Wet Dry		Layer Thickness [µm]	
	[°C]	[%]	[°C]			Wet	Dry
		50,6	30	16,9	8,5	225	145
	20.0			16,8	8,4	225	146
	30,0		7	15,8	7,8	175	129
				16,8	8,3	200	141
	21,0	50,0	21	17,5	8,4	150	115
				17,1	8,0	150	104
			7	16,6	8,0	150	115
				15,9	7,8	150	125
	13,0	48,5	21	16,4	7,7	125	117
				16,9	7,9	125	104
			13	16,0	7,3	125	109
				16,3	7,3	125	112
			7	18,2	8,5	100	86
				17,4	7 <i>,</i> 8	125	98
		47,2	21	17,9	8,1	125	89
	7,0			16,8	7,5	125	82
			7	15,4	6,9	125	84
10				15,8	7,0	125	87

- High impact of the coating temperature
- Low impact of the core temperature

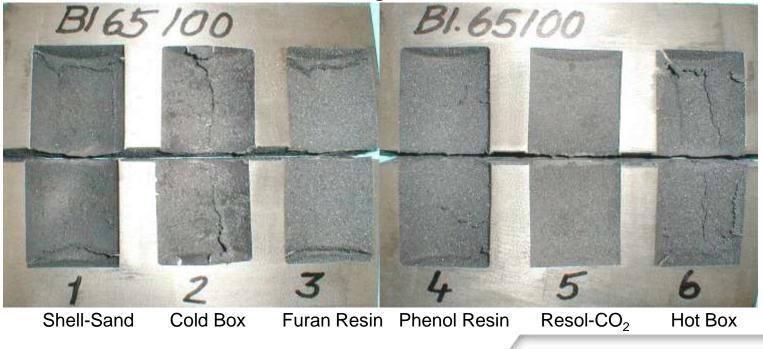
Increased reworking possible by lower layer thicknesses

Influencing Factors - Cleanness

Prevention of bacterial contamination

(only for water based coatings)

- Bacteria enter the coating in many ways
 - Air
 - Water
 - Bacterial films to system components
- Change of the coating properties

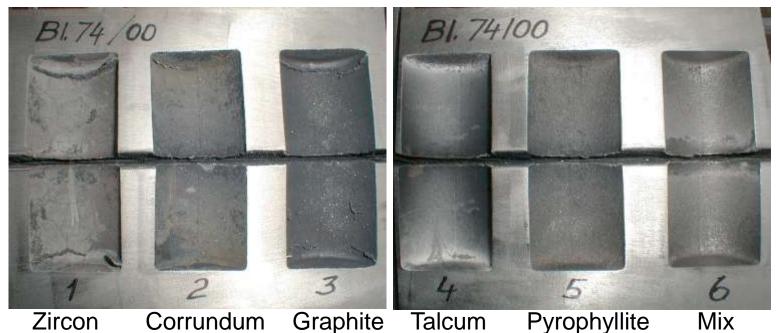


Influencing Factors - Moulding system

Anti-Veining Test Block

HIR.

Influencing Factors - Refractoriness of Coatings


Raw Material	Density [g/cm³]	Melting Point [°C]	Grain Shape	Formula	
Kaolinte	2,65	> 1700	plate structure	Al ₄ [(OH) ₈ Si ₄ O ₁₀]	
Pyrophylite	2,80	1600	plate structure	$AI_2[(OH)_2Si_4O_{10}]$	
Talcum	2,80	max. 1430	plate structure	$Mg_3[(OH)_2Si_4O_{10}]$	
Mica	2,85	> 900	plate structure	$KAI_2[(OH)_2AISi_3O_{10}]$	
Zircon	4,60	2200	angeld	ZrSiO ₄	
Graphite	2,1 - 2,3		flaky	C (70 - 95 %)	
Silica	2,60	1700	splintery	SiO ₂	

Grain size and shape of a raw material affects properties like permeability, anti veining properties or peel off behaviour

Influencing Factors - Refractoriness of Coatings

Test casting: Silica sand H32, 1,1 PBW No Bake Resin, 0,4 PBW Activator

Defect Prevention - Measuring Methods

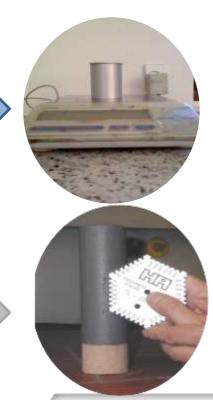
Viscosity measurement

- Viscosity cup: 3, 4, 6 mm in [s]
- + fast and easy measurement method, medium accuracy
- operator dependent, result variation depending on supplier

Density measurement Baumé stick in [°Bé]

- + fast and easy measurement method
- operator dependent, result variation depending on measuring devicé, low accuracy

Defect Prevention - Measuring Methods

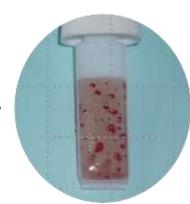

Density by weight Density cup in [g/ml]

+ fast and easy measurement method, medium to high accuracy

- operator dependent

 Layer Thickness measurement
 Wet Film Thickness Gauge in [µm]
 + fast and easy measurement method, sufficient accuracy

- operator dependent



Defect Prevention - Measuring Methods

Measurement of Bioburden Agar Strips

- + easy measurement method, detection of bacteria and fungi
- 2 4 days incubation

OAS SCCD System (Modular system)
 Automatic density measurement
 + reliable process with high accuracy,
 operator independent, possible to change
 coating viscosity rapidly

- High Investment

Defect Prevention - Automation

OAS SCCD System (Self Calibration Coating Device) = Automatic density measurement

- Modular system for dipping, flooding or spray application
- Measurement instruments outside the tank system
- Closed tank in order to avoid bacterial growth and solvent evaporation
- Optimal agitation system to avoid sedimentation and foam

Summary

Good casting results are obtained with:

- Use of a suitable coating
- Controlled coating preparation and dilution
- Homogeneous and uniform coating application
- Regular quality checks of appropriate measurement methodology

Thank you for your attention!

