

«Sustainable Induction Technology & Energy Saving»

«Sürdürülebilir İndüksyion Teknolojisi & Enerji Tasarrufu"»

Yılmaz Yıldır (ABP Induction)

2.Oturum: Döküm Teknolojileri Demir - Çelik

2nd Session: Casting Technologies Iron - Steel

Oturum Başkanı/Session Chairman: Hüseyin Yumak (Trakya Döküm San. Tic. A.Ş.)

Oturumlarda yer alan sunumlar 15 Eylül 2014 Pazartesi tarihinde kongre web sayfasına (kongre.tudoksad.org.tr) yüklenecektir.

17th International ABP Induction Conference October 1st – 2nd 2013, Dortmund

Sustainable Induction Technology

Yilmaz Yildir

SUSTAINABLE TECHNOLOGY

1. Sustainable Induction Technology

Three columns if sustainability

SUSTAINABLE

TECHNOLOGY

Agenda

- 1. Sustainable Induction Technology
- 2. Ecology
 - 2.1 Reduction of CO2 emissions
 - 2.2 Energy saving
 - 2.2 No environmental critical material
 - Recycling
- 3. Economy

2.3

- 4. Sociology
- 5. Summary

2. Ecology: **Specific CO₂ Emissions**

Including the emission of power plants with today's energy mix

Energy saving – coil design

- Coil losses are approx. 70% of total electrical losses
- By substitution of upper and lower cooling windings, losses should be reduced by up to 5%

NDUCTION

Energy saving – coil design

- expected energy and cost savings:
 - Annual production:
 - Energy consumption (standard coil):
 - Coil losses (total):
 - Reduction of coil losses:
 - Electricity rate (industrial):
 - Savings in energy consumption:
 - Savings in costs:

40.000 t 525 kWh/t 89 kWh/t 4,45 kWh/t = 5,0 % 8,95 ct / kWh ^{#1}

40.000 t/year x 4,45 kWh/t = **178.000 kWh/year**

178.000 kWh/year x 8,95 ct/kWh = **15.931 €/year**

Energy saving – process optimization

- Extension of the ABP simulation tool up to complete process
 between charging area and liquid metal transport to the molding line
- Possible to simulate the process also for complete melt shop including existing furnaces
- Realization of bottle necks

Energy saving – process optimization

• Simulation of complete liquid metal transport to different sources

SUSTAINABLE TECHNOLOGY

Energy saving – process optimization

- Evaluation of simulation shows potential for improvements, e.g.:
 - Time management (process etc.)
 - Furnace design (content and power)
 - Melt transportation (ladle sizes etc.)
 - Energy savings via high process efficiency

IFM8/16,7 10MW

16.000

ម្ល 14.000 ឆ្លំ 12.000

40.000 MM 8.000

6.000

No environmental critical material

- Product design without usage of environmental critical material
- No usage of environmental critical material
 - NO glycol etc.
- No use of health critical material
 - NO asbestos
 - NO PCB etc.

Recycling

- Melting of Returns and Chips
 - using chips from subsequent casting treatments saves resources
- Waste heat utilization
 - for hall heating and warm water saving energy

SUSTAINABLE TECHNOLOGY

Agenda

- 1. Sustainable Induction Technology
- 2. Ecology
- 3. Economy
 - 3.1 3.2
- Reliable Equipment design Reliable Power supply
- 4. Sociology
- 5. Summary

SUSTAINABLE TECHNOLOGY

3. Economy:

Furnace design

- Customers request more and more specific furnace designs for their application:
 - Mechanical design
 - Stirring issues
 - Superheating issues
 - Etc.
- For furnace designs with max. efficiency, reliability, and mechanical stability, 3D calculations are used by ABP

3. Economy:

Power supply – constant power supply

Praxis shows:

 Furnaces are not always operated at nominal point
 → Power losses, Production losses are the consequence

ABP Solution:

- ABP converters are designed for 30 % higher power, getting full power also with not optimal filled crucible (= low material density)
- High power supply reliability based on overdesigned power parts

3. Economy:

Power supply – constant power supply

Renault power and weight monitoring, 3 furnaces (10 to), one melting, two holding mode, one power supply (8,3 MW)

Agenda

- 1. Sustainable Induction Technology
- **2.** Ecology
- 3. Economy
- 4. Sociology

4.1

4.2

- Secured work place ground fault detector
- Secured work place Melt processor

5. Summary

Ground fault detection

Ground fault detection – critical situation

Ground fault detection

Improvements / Innovations:

- automatic activation after bypassing
 - e.g. after sintering of a wet crucible
- Automatic check of bath grounding
 - Instead of manual check
- Locating of ground faults
 - Decision-making support for operators for further measurements
- Hedgehog coil

NDUCTION

Melt processor

- Operation of melt processor systems
 - Save energy
 - Secure melt quality
 - Support operators
 - Reduce off-times
- Fully-fledged PLC based melt processors
 - For reduction of PC based breakdowns / errors
 - For enhancing workplace security via continuous monitoring of melting process

Agenda

- 1. Sustainable Induction Technology
- 2. Ecology
- 3. Economy
- 4. Sociology
- 5. Summary

5. Summary

Sustainable Induction Technology

Ecology

- Reduction of CO2 emissions using induction furnaces as a melting aggregat
- Energy saving based on new coil design and process optimization
- No environmental critical material use such as PCB, Asbestos etc.
- Recycling by melting of chips

Economy

Reliable Equipment design using 3D simulation tools Reliable Power supply – with constant power supply even under not optimal conditions

Sociology

Secured work place – ground fault detector protects the operator Secured work place – Melt processor on SPS base

