

«Greensand "Less Is Best": A More Sustainable Philosophy For Change» «Yaş Kalıplama Tekniğinde Değişim İçin Daha Sürdürülebilir Bir Yaklaşım»

Brian Officer (Amcol)

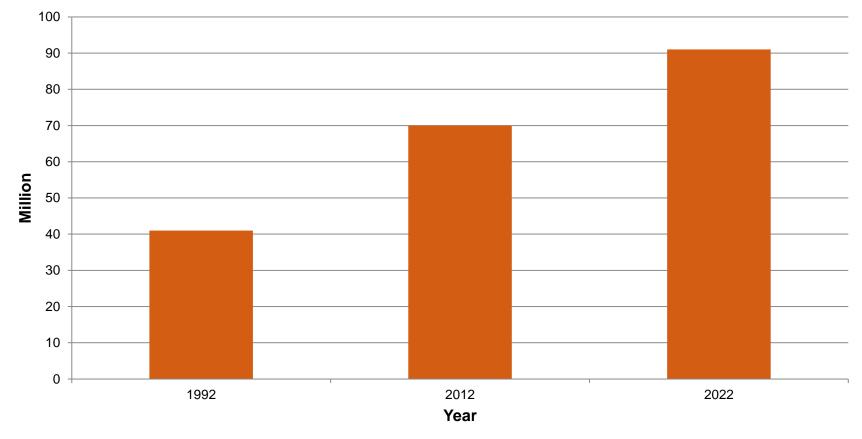
4th Session: Mould & Core Technologies

Oturum Başkanı/Session Chairman: Dr. Türsen Demir (Çukurova Kimya End. A.Ş.)

Oturumlarda yer alan sunumlar 15 Eylül 2014 Pazartesi tarihinde kongre web sayfasına (kongre.tudoksad.org.tr) yüklenecektir.

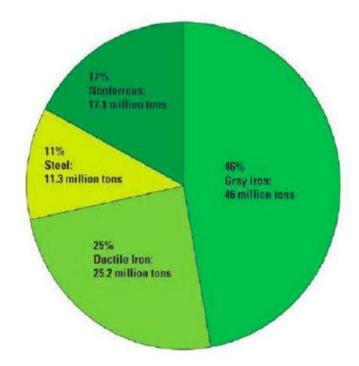
GREENSAND "LESS IS BEST" A MORE SUSTAINABLE PHILOSOPHY FOR CHANGE AMACOL METALCASTING

GREENSAND ADDITIVES


- Washed graded silica sand
- Calcium, Sodium or blended bentonite
- Coal Dust
- Lustrous carbon raiser (gilsonite, pitch)
- Premix Products

FERROUS CASTING OUTPUT

Global Car Sales



MERICAN COLLOID COMPANY

IOVOX

FERROUS CASTING MT PER ANNUM

FERROUS CASTING OUTPUT

- 70 MT/A GI and DI 70% produced in greensand
- 50MT/A castings
- 60% yield 5:1 sand : metal ratio
- 420 MT/A sand mixed
- 1% make up addition
- 4.2MT/A of additives

FERROUS CASTING OUTPUT

- IN ORDER TO PRODUCE BENTONITE AND CARBON PRODUCT
- Mining
- Crushing
- Activation
- Drying
- Shipping
- A LOT OF ENERGY CONSUMPTION

GLOBAL GREENSAND SYSTEM PROPERTIES TYPICAL VENTILATED DISC FOUNDRIES

*

Table 1.

Typical Regional Greensand Property

Properties	China	India	Australia	Europe	USA
Compactability %	34-36	35-39	34-36	35-37	36-38
Active clay %	9.0-10	10.0-11.0	8.5-9.5	9.0-10	7.5-8.5
Volatile %	2.5-2.7	3.0-3.3	1.3-1.5	1.8-2.0	1.5-1.7
LOI %	4.2-4.6	5.0-5.5	2.8-3.0	3.4-3.8	2.8-3.1
Wet Tensile N/cm2	0.33-0.35	0.18-0.22	0.21-0.24	0.32-0.34	0.29-0.33
Moisture%	3.3-3.6	3.5-3.8	3.0-3.2	2.9-3.2	2.8-3.0
Green Strength					
N/cm2	20-22	18-21	22-24	23-25	22-24
Permeability	120-140	130-150	70-80	120-130	110-130
Total Clay%	12.0-13.0	13.0-14.5	11.0-12.0	11.5-12.5	10.0-11.0
Afs no.	56-60	55-60	65-70	61-65	60-63

A) VOLCLAY

AND HEVI-SAND

REGIONAL BENTONITE PROPERTIES

Origin	China	India	Australia	Europe	USA
CEC (meq)	88	96	74	84	108
Total Hardness	9	16	7	14	20
Soluble Ca CO3 (%)	4.25	3.2	1.2	3	2.6
PH	9.6	9.64	9.9	9.3	9
Free Swell (mls)	23	23	28	28	34
Grit (%)	2.6	2.2	3	2.7	2.6
Silica sand +Clay (%)	7	7	7	7	7
MOISTURE (%)	2.7	2.2	2.2	2.3	2.6
WATER (mls)	75	75	53	70	80
COMP (%)	41	40	39	40	40
PERM	160	130	167	165	145
GCS (psi)	13	19	12.7	15.9	14.1
DCS (psi)	32	38	30	37	37
GS (psi)	2.7	3.2	2.3	3	2.9
WTS (n/cm2)	0.27	0.48	0.23	0.30	0.25

(A)VOLCLAY

IOVOX

HEVI-SAND"

Table 3. Foundry Bentonite Properties

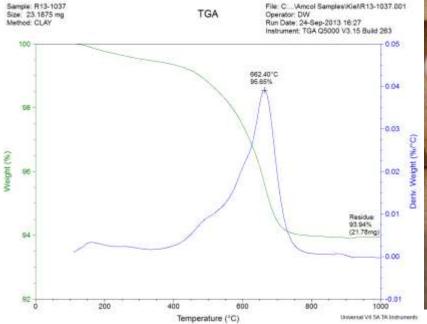
GLOBAL GREENSAND ADDITIVES AND ADDITIONS TYPICAL VENTILATED DISC FOUNDRIES

Table 2. Typical Regional greensand Additions

Additions	China	India	Australia	Europe	USA
Bentonite Na					
Bentonite activated					
Ca	1	1		1	
Blended bentonite			1		1
Coal	~	1	1	1	1
Pitch		1			
Lustrous carbon					
raiser	1		1	1	
Modified lignite					1
Cereal	1				
Wood flour		~			
Typical make up add					
%	1	1.3	0.7	0.75	0.5

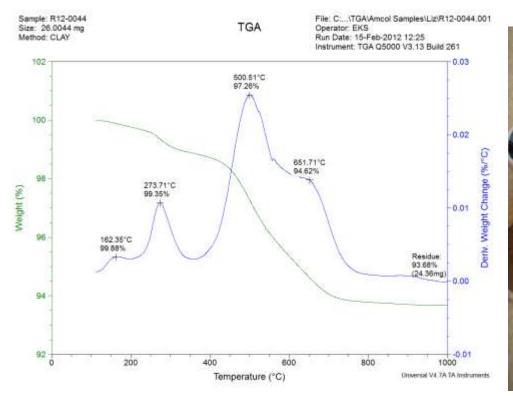
MHEVI-SAND'

THERMAL GRAVIMETRIC ANALYSIS (TGA)



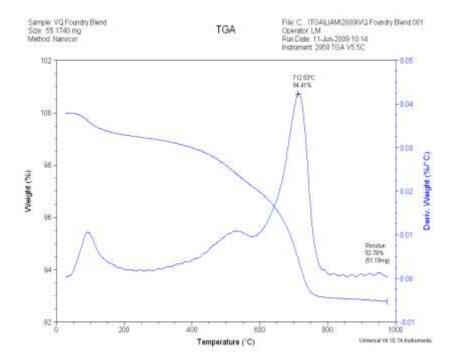
WOLCLAY MEVI-SAND.

CHINESE BENTONITE



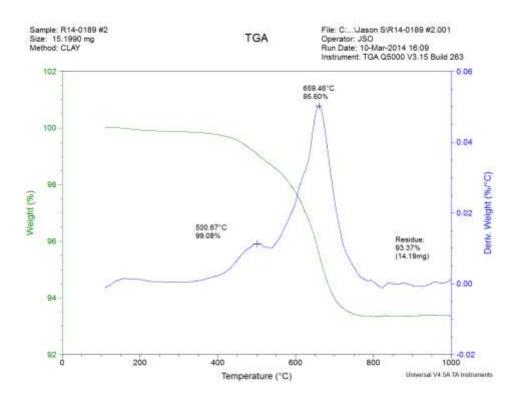
WOLCLAY

INDIAN BENTONITE



WOLCLAY

AUSTRALIAN BENTONITE



EUROPEAN BENTONITE



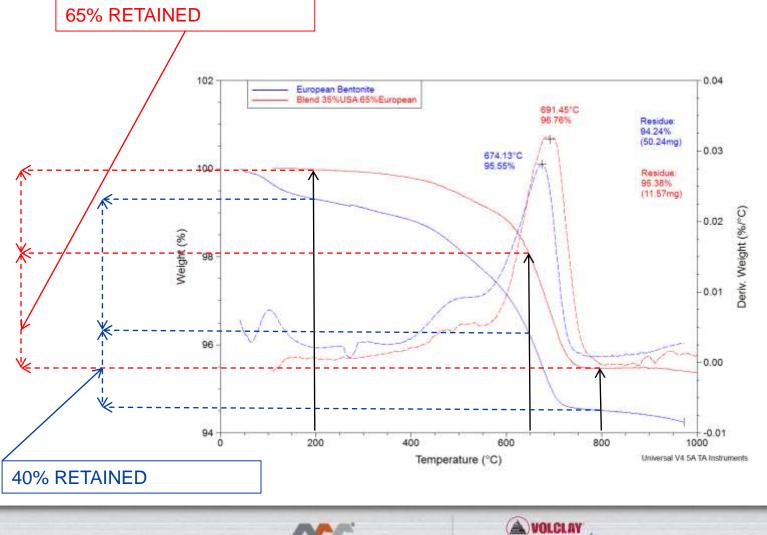


WHEVI-SAND.

USA BENTONITE

UNACTIVATED AND ACTIVATED SODIUM BENTONITE

ACTIVATED EUROPEAN AND 20% UNACTIVATED USA BENTONITE + 80% ACTIVATED EUROPEAN BENTONITE



AMCOL METALCASTING

EFFECT OF BLENDING USA BENTONITE WITH CALCIUM BENTONITE

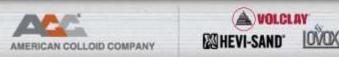
AMERICAN COLLOID COMPANY

HEVI-SAND

IOVOX

CARBONACEOUS ADDITIVES

Coal dust

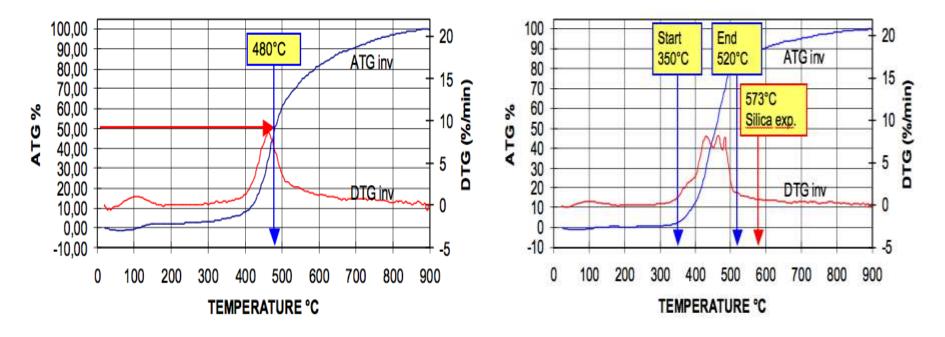

pitch

asphalt

gilsonite

starch

lignite



TGA CARBONACEOUS PRODUCTS

COAL / 100% Volatiles

High LC producer / 100% Volatiles

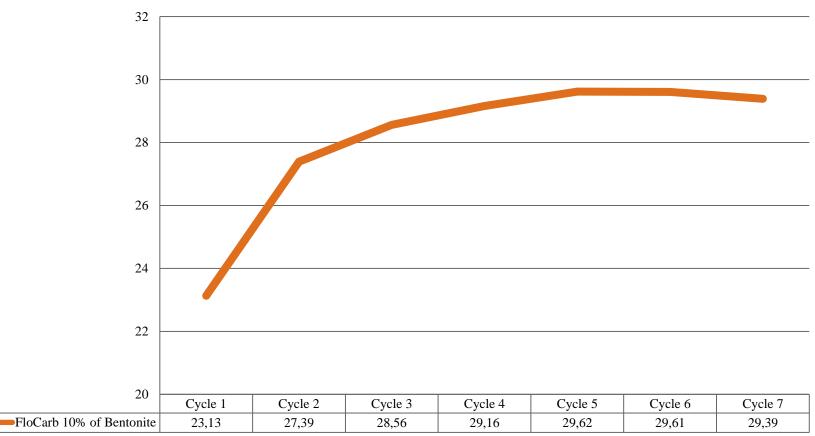
A VOLCLAY

AN HEVI-SAND

IOVOX

AMCOL METALCASTING

Lignite – Influence on system sand properties with pouring cycles

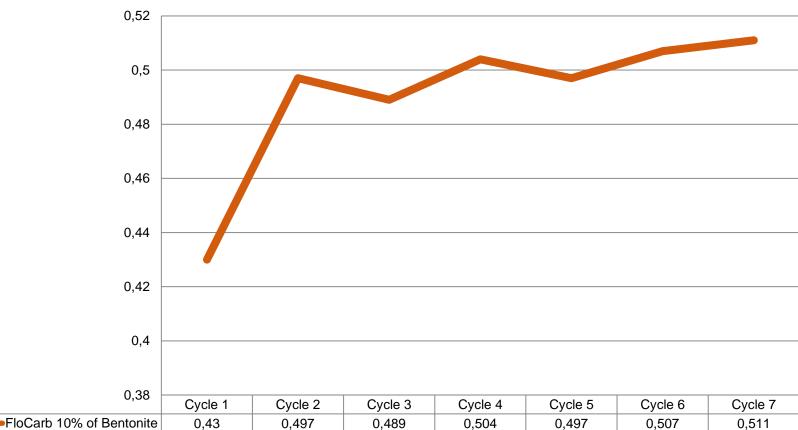

- The experiment design was as follows
 - Simpson 500 Kg Muller mixing time 10 min
 - Silica Sand (Wedron 520)
 - o 8% Sodium Bentonite
 - Carbonaceous additives 20% of dry Bentonite weight
 - Seacoal 10% of Bentonite
 - Lignite 10% of Bentonite
 - Herman High Pressure Moulding machine B Scale Hardness 92 – 95
 - Compactability target 39
 - 7 Complete casting cycles maintaining Clay, CB and combustible materials. 3 moulds poured for each cycle

GCS increases after one cycle, indicating the Lignite impacting on the Bentonite properties

A)VOLCLAY

HEVI-SAND

Green Compressive Strength



PSI

WTS shows a similar trend to GCS – reflecting the Lignite impacting on the Bentonite

A VOLCLAY

AN HEVI-SAND

COLLOID COMPANY

Wet Tensile Strength

Lignite – Influence on HAPS

- In 2004, an emission test study was conducted to determine the effect of using FloCarb as a Seacoal replacement for green sand moulding
- The study and testing were conducted by,

 University of Northern Iowa, Cedar Falls, IA
 AFS American Foundry Society
 ACC American Colloid Company

Testing Summary

- The greensand mixtures consisted of the same silica sand, 8% Sodium Bentonite and Carbonaceous additive of 20% of the Bentonite dry weight.
- 4 Recipes where used to compare the effects of substituting Seacoal with Lignite
 - 1.100% Seacoal
 - 2.75% Seacoal 25% Lignite
 - 3.50% Seacoal 50% Lignite
 - 4.100% Lignite

Testing Methodology

- The same pattern was used for each testing.
- 3 moulds were produced from each sand batch, and each recipe was cycled 7 times to mature the mix
- The emission testing was conducted on Cycles 6 & 7.
- The same metal composition and process used for all tests

Testing Methodology

- The emission testing during the casting process remained at constant time for all the test
 - \circ Pouring 0 to 5 minutes
 - \circ Cooling 5 to 65 minutes
 - Shakeout 65 to 70 minutes
- The emission samples were collected and tested by an independent laboratory

Reduction of HAPS and VOC - 45% Reduction

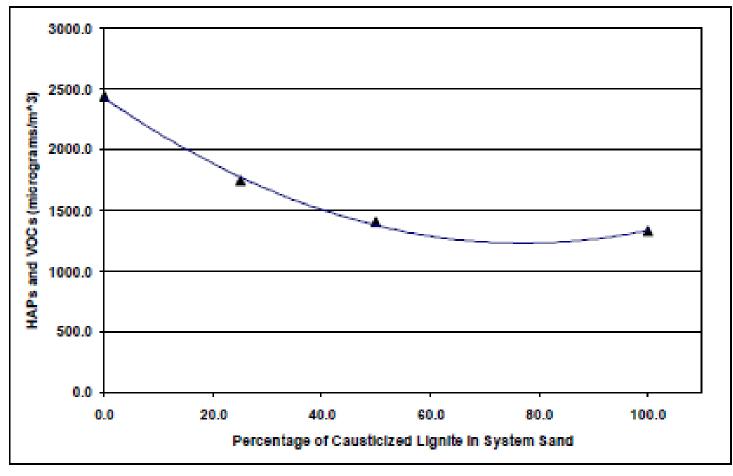


Fig. 4: Reduction of HAP and VOC Emissions as a Function of the Seacoal: Causticized Lignite Ratio

Total Benzene Emissions – 42% Reduction

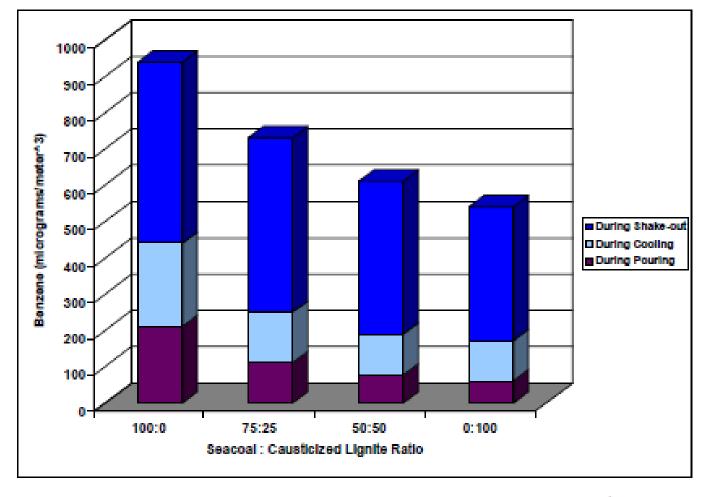
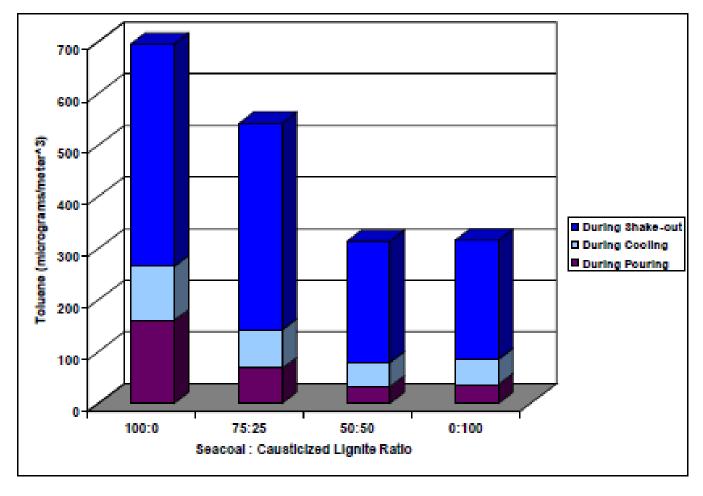
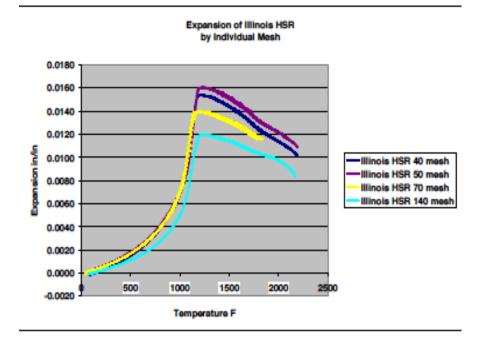
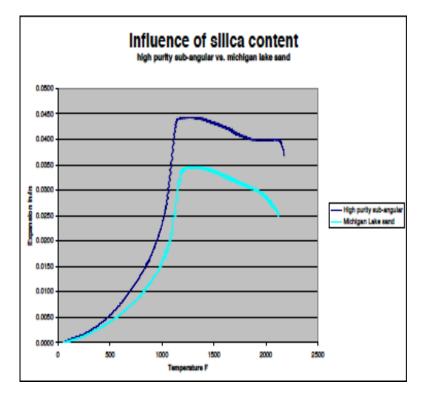


Fig. 5: Total Benzene Emissions as a Function of the Casting Process (µg/m³)

Toluene Emissions – 54% Reduction




Fig. 6: Total Toluene Emissions as a Function of the Casting Process (µg/m³)



SILICA SAND EXPANSION

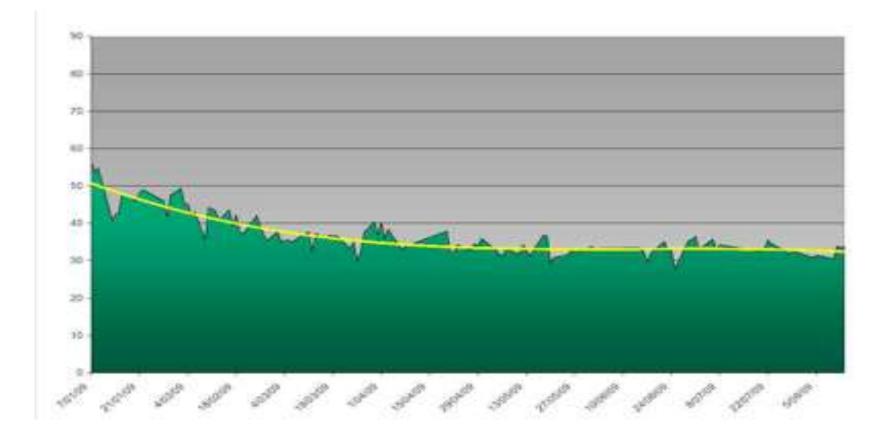
HOT STRENGTH DATA

	USA (psi)	European (psi)	Australian(psi)	Chinese (psi)	Indian (psi)
Temperature (°C)					
900	510	370	435	400	220
1010	595	175	510	190	95
1100	192	35	123	40	18

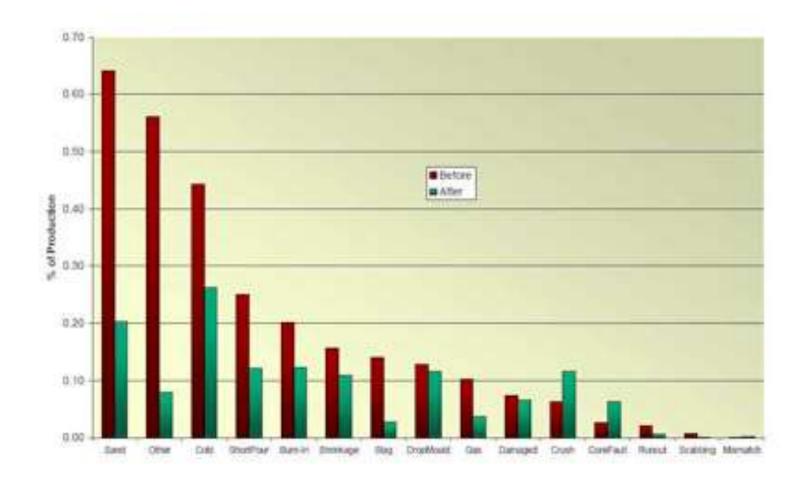
IOVOX

LESS IS BEST I+F TRIALS

- The main problems were-:
- Inclusions and poor compaction in pockets


Overloaded sand system

- Objectives -:
- Reduce defects, reduce consumption and emissions, reduce unit costs.


I+F RAW MATERIAL USAGE

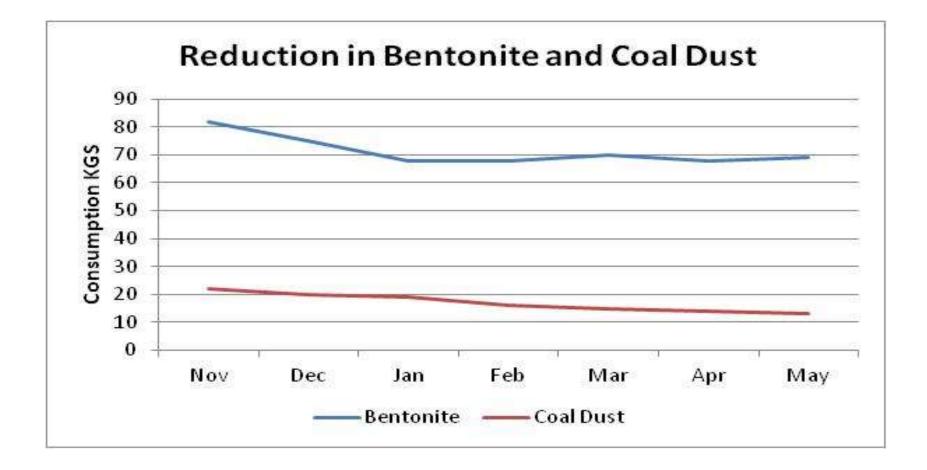
I+F SCRAP ANALYSIS BEFORE AND AFTER



IOVOX

AMCOL METALCASTING

TYPICAL I+F CASTING SURFACE BEFORE AND AFTER



WOLCLAY

LESS IS BEST - ADDITION RATES UK FOUNDRY

LESS IS BEST – UK FOUNDRY – SAND PROPERTIES BEFORE AND AFTER

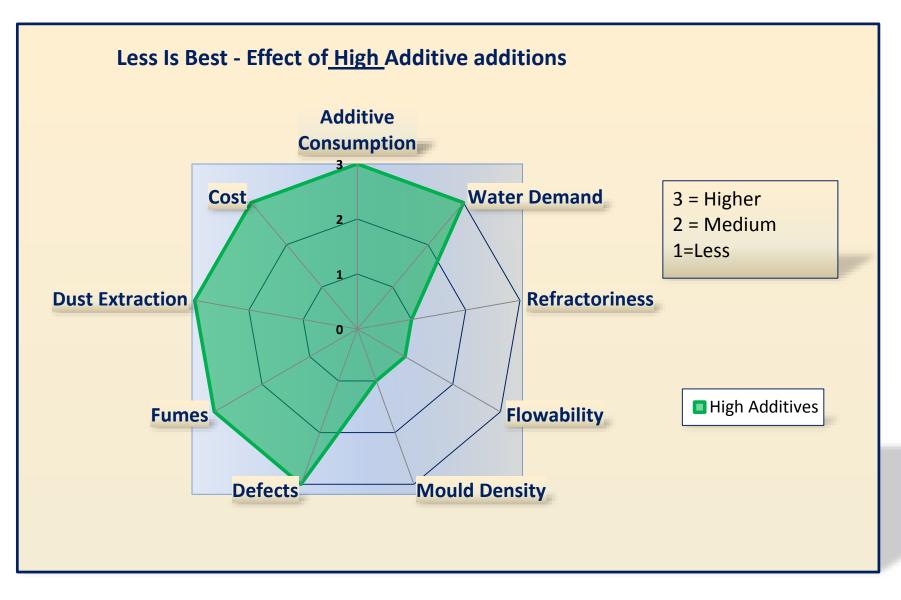
Active Clay (%)	AFS clay (%)	Volatile (%)	LOI (%)
11	15.5	2.6	6.9
11	12.5	1.6	4.7

Moisture (%)	GCS (psi)	Permeabilty	WTS (n/cm2)	DCS (psi)	Compactibility (%)
5	25.7	104	0.32	42	40
4	23	115	0.3	52	40

LESS IS BEST – TURKISH FOUNDRY– SAND PROPERTIES BEFORE AND AFTER

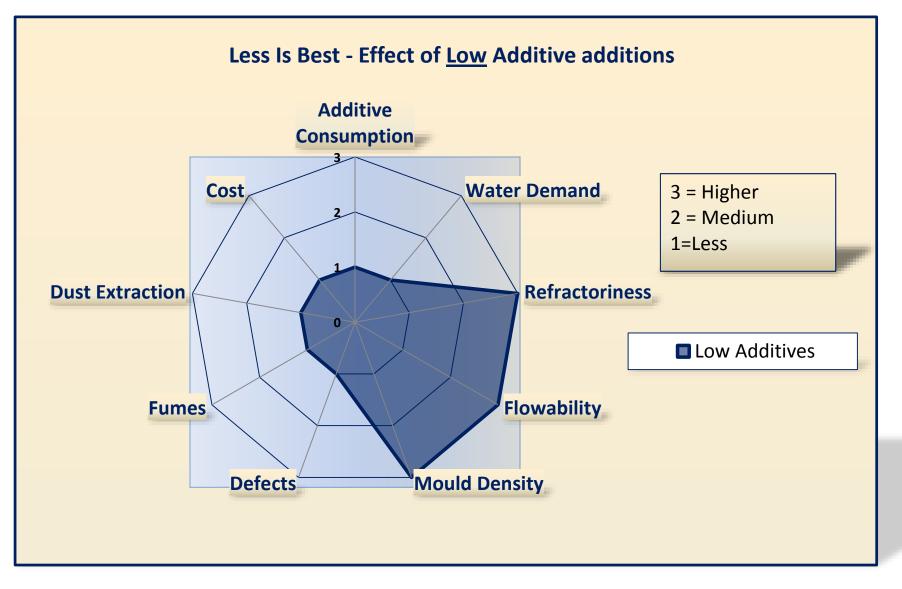
Active Clay(%)	AFS Clay(%)	Volatile(%)	LOI(%)
11.2	20.1	2.6	8.1
8.4	13.7	1.9	5.7

Moisture(%)	GCS(kn/m2)	WTS (n/cm2)	DCS (kn/m2)	Comp (%)	Sample Wgt (g)
4.6	174	0.29	560	42	141
4.2	158	0.25	597	43	143



LESS IS BEST – TURKISH FOUNDRY– MATERIAL USAGE BEFORE AND AFTER

Bentonite (kg)	Coal(kg)	New Sand (kg	Bent/Metal	Bent/NS	Bent / burn out	% Bent Reduction
15	15	20	13.5	1.98	11.5	
Maxicarb						
11	0	20	8	1.98	6	
						47%



WOLCLAY WHEVI-SAND

CONCLUSIONS – LESS IS BEST

- Selection of bentonite and carbon additives should based on high temperature criteria as opposed to room temperature data
- Global experience from foundry trials
- Foundries should be able to

AMCOL METALCASTING

CONCLUSIONS

- Significantly reduced consumption of make up additions to greensand systems.
- Significantly reduce the emission of HAPS
- Reduce or remove the risks of fires and explosions both in transportation and storage.
- Improve mold face stability and reduce the incidence of sand related defects.
- Reduce the total carbon footprint associated with the mining, processing, transporting and use and disposal foundry sand system raw materials.

