

«Next Generation Of Electrical Ladle Heaters»

«Yeni Jenerasyon Elektrikli Pota Isıtıcılar»

Marcus Andersson (SAN Malz. Tek.)

5.Oturum: Döküm Teknolojileri Demir Dışı 5th Session: Casting Technologies Non Ferrous

Oturum Başkanı/Session Chairman: Can Demir (Componenta Döküm. Tic. San. A.Ş.- Alüminyum)

Oturumlarda yer alan sunumlar 15 Eylül 2014 Pazartesi tarihinde kongre web sayfasına (kongre.tudoksad.org.tr) yüklenecektir.

Next generation Electrical ladle heaters

Marcus Andersson, Sandvik Heating Technology

Kanthal Global Services

Electrical Heating Systems, Engineering services & Technical services

Electrical Heating Systems

- Concept solutions
 - Ladle heaters
- Ladle dryers
- Mold heaters
- Stub dryers
- Anode heaters
- Cathode heaters

Engineering Service

- Furnace reengineering
- Commissioning Complete furnace
- refurbishment projects "Taylor made"
 - heating systemsProduct trainings

Technical Service

- System Installations
- Service contracts
- Spare parts
- Refurbishments
- Repairs

Ladle heater

- Heater
- Controls
- Accessories
- Commissioning & Installation
- Service

Ladle dryers & Ladle pre-heaters Kanthal electrical heating systems

Kanthal electrical heating systems

- Suitable for both pre-heating and holding of liquid metal in primary and secondary aluminium processing and steel foundries
- Long life refractory lining by optimized processes

Ladle heaters Product portfolio

Model	Ladle size A [mm] (inch)	Phases	Power [kW] (BTU/h)	Supply voltage [V]	Heater Dimensions	
					OD [mm] (inch)	H [mm] (inch)
5–7	500-700 (20"-28")	1-phase	30 (102 400)	230	1150 (45,3")	700 (27,5")
	500-700 (20"-28")	1-phase	45 (153 500)	230		
	500-700 (20"-28")	1-phase	66 (225 200)	400		
7–9	700-900 (28"-35")	1-phase	66 (225 200)	400	1350 (53,1")	700 (27,5")
	700-900 (28"-35")	3-phase	90 (307 000)	400		
9–11	900-1100 (35"-43")	3-phase	90 (307 000)	400	1550 (61")	700 (27,5")
	900-1100 (35"-43")	3-phase	135 (460 600)	400		
- 3	1100-1300 (43"-51")	3-phase	90 (307 000)	400	1750 (68,9")	700 (27,5")
	1100-1300 (43"-51")	3-phase	135 (460 600)	400		
13-15	1300-1500 (51"-59")	3-phase	90 (307 000)	400	1950 (76,8")	700 (27,5")
	1300-1500 (51"-59")	3-phase	135 (460 600)	400		
	1300-1500 (51"-59")	3-phase	200 (682 400)	400		
15-17	1500-1700 (59"-67")	3-phase	135 (460 600)	400	2150 (84,6")	700 (27,5")
	1500-1700 (59"-67")	3-phase	200 (682 400)	400		
17-19	1700-1900 (67"-75")	3-phase	135 (460 600)	400	2350 (92,5")	700 (27,5")
	1700-1900 (67"-75")	3-phase	200 (682 400)	400		
19–21	1900-2100 (75"-83")	3-phase	135 (460 600)	400	2500 (98,4")	700 (27,5")
	1900-2100 (75"-83")	3-phase	200 (682 400)	400		
	1900-2100 (75"-83")	3-phase	270 (921 300)	400		

Click to find out more!

SANDVIK

Electrical ladle pre-heating

Case story

Existing gas burner system

In aluminum foundry

- From room temperature to 850°C in one hour (Retained three hours – 4 hours in total for preheating)
- Gas type: 13A (City gas) Power: 41.7 MJ/m³
- Average gas consumption 6 m³/h (24 Nm / 4 hours)

Electrical ladle heating system

- Heating elements made of Kanthal[®] Super RA (12/24) with 3D configuration
- Heater unit is automatically raised and • lowered hydraulically
- Heater specification 54kW/600A •
- Attachments on both sides to minimize • heat loss from the spouts

When preheating

Visual comparison

Gas burner system vs electrical heating system

- There is a small gap between the gas burner and the ladle for exhaust gas, whereas there is no clear gap on the electric heater
- The electrical heating system is equipped with a shielding cover for safety. When the heater unit is lifted, residual radiation could harm an operator

Gas burner system

Electrical Heating system

Comparison With gas burner system

- Target temperature is fixed to achieve the same temperature in the outer wall, then a comparison is made in power consumption between the electrical heating system and the gas burner system
- Both primary and secondary electricity consumption are measured (to include power loss in controller, cable, etc)
- Target temperature: 920°C (thermocouple)
- Temperature monitoring is always active (by Programmable Logic Controller, PLC) and controlling upper limit

Temperature measurements In aluminum foundry

- There are thermocouples at 7 points on the heater to measure temperature when preheating
- A data logger records each temperature every 30 seconds
- Thermocouple number 7 measures the temperature of the exhaust gas

Temperature profile in outer shell

• The burner quickly heats the upper area due to the effect of the exhaust gas

2 hours

- Showed almost same temperature profile
- But, only upper part for burner system showed higher temperature

After 4 hours

• Same as after 2 hours, but the electrical heating system showed slightly better temperature uniformity

Temperature profile over time

Data summary:

- CH (1) (electrical) shows higher temperature than TC (setting temperature) due to the proximity effect from the heater
- Both tests reached same temperature at CH (4) after 4 hours preheating, 250C
- The electrical heating system showed better temperature uniformity in the outer shell and inner wall

Heat balance summary Comparison

- In the same preheating conditions, the heat balance is as shown in the graph
- Pure efficiency improvement 50% (268 kWh / 134 kWh)

Advantages

Kanthal electrical ladle heating system

Economy

- Energy consumption reduced by 50 % compared to a gas burner system
- Increased refractory lifetime by 10 15 % due to better temperature control compared to a gas burner system
- Unmanned operation gives low labor cost

Advantages

Kanthal electrical ladle heating system

Quality and functionality

- Lack of combustable gases in the Kanthal ladle system gives a reduced risk of hydrogen in the molten metal which results in higher quality
- Same system can be used for drying / firing simply by changing patterns

Environment

- Reduced greenhouse gas emissions: CO₂ emissions for electrical heating systems = 0
- Zero NO_X

Heated by

Advantages

Kanthal electrical ladle heating system

Employee health

- Quiet in operation
- No harmful gas, such as CO

Employee safety

- When drying, fine tuning is possible, reducing risk of bubbles in the refractory
- No risk of water vapor build-up, low risk of vapor explosion
- No gas pipeline required

Thank you for your attention!

