«Next Generation Of Electrical Ladle Heaters»
 «Yeni Jenerasyon Elektrikli Pota Isıtıcılar»
 Marcus Andersson (SAN Malz. Tek.)

5.Oturum: Döküm Teknolojileri Demir Dışı
\section*{5th Session: Casting Technologies Non Ferrous}

Oturum Başkanı/Session Chairman: Can Demir (Componenta Döküm. Tic. San. A.Ş.- Alüminyum)

Kanthal ${ }^{\circledR}$ Global Services
 Next generation Electrical ladle heaters

Marcus Andersson, Sandvik Heating Technology

Kanthal Global Services

Electrical Heating Systems, Engineering services \& Technical services

Electrical Heating Systems

- Concept solutions
- Ladle heaters
- Ladle dryers
- Mold heaters
- Stub dryers
- Anode heaters
- Cathode heaters

Engineering Service

- Furnace reengineering
- Commissioning
- Complete furnace refurbishment projects
- "Taylor made" heating systems Product trainings

Technical Service

- System Installations
- Service contracts
- Spare parts
- Refurbishments
- Repairs

Ladle heater

- Heater
- Controls
- Accessories
- Commissioning \& Installation
- Service

Ladle dryers \& Ladle pre-heaters

Kanthal electrical heating systems

- Suitable for both pre-heating and holding of liquid metal in primary and secondary aluminium processing and steel foundries
- Long life refractory lining by optimized processes

Ladle heaters
 Product portfolio

	Ladle size A [mm] (inch)	Phases	Power [kW] (BTU/h)	Supply voltage [V]	Heater Dimensions	
					OD [mm] (inch)	\mathbf{H} [mm] (inch)
5-7	500-700 (20"-28")	1-phase	30 (102 400)	230	1150 (45,3")	700 (27,5")
	500-700 (20"-28")	1-phase	45 (153 500)	230		
	500-700 (20"-28")	1-phase	66 (225 200)	400		
7-9	700-900 (28"-35")	1-phase	66 (225 200)	400	1350 (53,1")	700 (27,5")
	700-900 (28"-35")	3-phase	90 (307000)	400		
9-11	900-1100 (35"-43")	3-phase	90 (307000)	400	1550 (61")	700 (27,5")
	900-1100 (35"-43")	3-phase	135 (460 600)	400		
11-13	1100-1300 (43"-51")	3-phase	90 (307000)	400	1750 (68,9")	700 (27,5")
	1100-1300 (43"-51")	3-phase	135 (460 600)	400		
13-15	1300-1500 (51"-59")	3-phase	90 (307 000)	400	1950 (76,8")	700 (27,5")
	1300-1500 (51"-59")	3-phase	135 (460 600)	400		
	1300-1500 (51"-59")	3-phase	200 (682 400)	400		
15-17	1500-1700 (59"-67")	3-phase	135 (460 600)	400	2150 (84,6")	700 (27,5")
	1500-1700 (59"-67")	3-phase	200 (682 400)	400		
17-19	1700-1900 (67"-75")	3-phase	135 (460 600)	400	2350 (92,5")	700 (27,5")
	1700-1900 (67"-75")	3-phase	200 (682 400)	400		
19-21	1900-2100 (75"-83")	3-phase	135 (460 600)	400	2500 (98,4")	700 (27,5")
	1900-2100 (75"-83")	3-phase	200 (682 400)	400		
	1900-2100 (75"-83")	3-phase	270 (921 300)	400		

Click to find out more!

Electrical ladle pre-heating

Case story

Existing gas burner system

In aluminum foundry

- From room temperature to $850^{\circ} \mathrm{C}$ in one hour
(Retained three hours - 4 hours in total for preheating)
- Gas type: 13A (City gas)

Power: $41.7 \mathrm{MJ} / \mathrm{m}^{3}$

- Average gas consumption $6 \mathrm{~m}^{3} / \mathrm{h}$ (24 Nm / 4 hours)

Electrical ladle heating system

- Heating elements made of Kanthal ${ }^{\circledR}$ Super RA (12/24) with 3D configuration
- Heater unit is automatically raised and lowered hydraulically
- Heater specification $54 \mathrm{~kW} / 600 \mathrm{~A}$

System

- Attachments on both sides to minimize heat loss from the spouts

Visual comparison

Gas burner system vs electrical heating system

- There is a small gap between the gas burner and the ladle for exhaust gas, whereas there is no clear gap on the electric heater
- The electrical heating system is equipped with a shielding cover for safety. When the heater unit is lifted, residual radiation could harm an operator

Electrical Heating system

Comparison

With gas burner system

- Target temperature is fixed to achieve the same temperature in the outer wall, then a comparison is made in power consumption between the electrical heating system and the gas burner system
- Both primary and secondary electricity consumption are measured (to include power loss in controller, cable, etc)
- Target temperature: $920^{\circ} \mathrm{C}$ (thermocouple)
- Temperature monitoring is always active (by Programmable Logic Controller, PLC) and controlling upper limit

Temperature measurements

In aluminum foundry

- There are thermocouples at 7 points on the heater to measure temperature when preheating

Temperature profile in outer shell

- The burner quickly heats the upper area due to the effect of the exhaust gas

- Showed almost same temperature profile
- But, only upper part for burner system showed higher temperature

- Same as after 2 hours, but the electrical heating system showed slightly better temperature uniformity

Temperature profile over time

Gas burner system

Electrical heating system

Data summary:

- \quad CH (1) (electrical) shows higher temperature than TC (setting temperature) due to the proximity effect from the heater
- Both tests reached same temperature at CH (4) after 4 hours preheating, 250C
- The electrical heating system showed better temperature uniformity in the outer shell and inner wall

Heat balance summary

Comparison

- In the same preheating conditions, the heat balance is as shown in the graph
- Pure efficiency improvement 50% (268 kWh / 134 kWh)

Advantages

Kanthal electrical ladle heating system
 m

Economy

- Energy consumption reduced by 50% compared to a gas burner system
- Increased refractory lifetime by $10-15 \%$ due to better temperature control compared to a gas burner system
- Unmanned operation gives low labor cost

Advantages

Kanthal electrical ladle heating system

Quality and functionality

Heated by KANTHAL

- Lack of combustable gases in the Kanthal ladle system gives a reduced risk of hydrogen in the molten metal which results in higher quality
- Same system can be used for drying / firing simply by changing patterns

Environment

- Reduced greenhouse gas emissions:
CO_{2} emissions for electrical heating systems $=0$
- Zero NO_{X}

Advantages

Kanthal electrical ladle heating system

Employee health

- Quiet in operation
- No harmful gas, such as CO

Employee safety

- When drying, fine tuning is possible, reducing risk of bubbles in the refractory
- No risk of water vapor build-up, low risk of vapor explosion
- No gas pipeline required

Information material

www.kanthal.com A200 Hall 2

Home $>$ Productt $>$ Furnace eroducts and heatina systems $>$ Electric heatina svstems $>$ Lade dryers and lade heaters

heate

Thank you for your attention!

