

«EN 1563 Yeni Nesil Dökme Demirler»

«EN1563 - New Generation Ductile Iron»

Seyfi Değirmenci Bülent Şirin Bert Duit (Componenta)

7.Oturum: Süreçler ve Kontrol

7th Session: Process and Control

Oturum Başkanı/Session Chairman: Mustafa Akyürek (Anadolu Döküm San. Tic. A.Ş.)

Oturumlarda yer alan sunumlar 15 Eylül 2014 Pazartesi tarihinde kongre web sayfasına (kongre.tudoksad.org.tr) yüklenecektir.

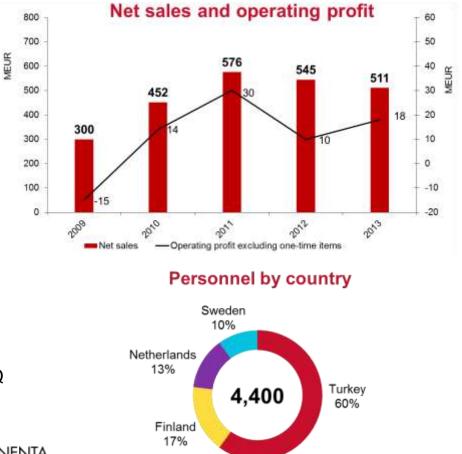
EN 1563 YENI NESIL DÖKME DEMIRLER

Seyfi Değirmenci, Bülent Şirin, Bert Duit

TURKISH FOUNDRYMEN SOCIETY SEPTEMBER 11-13.2014 ISTANBUL

AGENDA

- Componenta Company overview
- SSF, Solution Strengthened Ferrite
- Mechanical properties
- Machinability
- Some examples of SSF designs
- Experiences
- Cost impact, how to act
- Summary

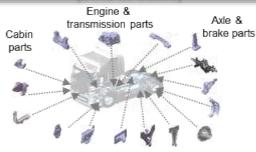

COMPANY OVERVIEW

COMPONENTA:

The second largest independent cast component supplier in Europe

asting Future Solutions

- Componenta serves its customers by offering them casting solutions covering the whole value chain from engineering to finished components.
- The Group's foundries and machine shops are located in Turkey, Finland, the Netherlands and Sweden. In addition, the Group has three forges in Sweden.
- Componenta's customers are manufacturers of vehicles, machines and equipment in various industries: Global players such as Volvo, Caterpillar and Wärtsilä. Long-term customer relationships and strong credit ratings.
- Componenta's shares are listed on the NASDAQ OMX Helsinki.



Ready to serve - strong local presence in key markets

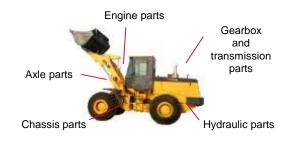
Strong market positioning in selected customer industries

Heavy trucks (31% of sales)

Chassis & suspension parts

- Volvo Trucks a customer since 1960's
- Customized solutions through optimized component design and use of alternative materials to achieve vehicle weight goals

Agricultural machinery (17% of sales)


Chassis & structure

Transmission

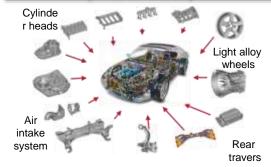
Axle housing

& gearbox housing

Construction and mining (19% of sales)

- Solutions for all major players using 3D CAD data and finite element analysis
- Components supplied to loaders, haulers, • excavators and graders.

Machine building (18% of sales)



- Complex advanced engineering and co-design activities to meet technical challenges
- Cast components from iron to aluminium, rough or machines, possible surface treatment.
- Large segment with diverse sub-segments including: holding blades for windmills, railway equipment, compressor equipment industrial gears etc.

COMPONENTA

Casting Future Solutions

Automotive (15% of sales)

- Produces to leading OEM's and has two own trademarks: DJ and MAXX
- Fine-tuned component features by advanced engineers: reduced weight, lower CO2 emissions, improved strength and fuel economy.

Engine

blocks

&

cylinder

heads

•

OUR BROAD CUSTOMER BASE supports stability and innovation

Casting Future Solutions

OUR CAPABILITIES BY FOUNDRY

	TYPE OF THE LINE	вох	SIZE	TYPICAL MAXIMUM PRODUCT WEIGHT		MINIMUM SERIAL/ YEARLY VOLUME	MATERIALS	
		BOX SIZE (mm)	HEIGHT (mm)	(kg)	LINE (tons/year)	FOUNDRY (tons/year)	Moulds/serie or tons/year	
Iron foundries					320,000			
Finland						68,000		
Pori	Disa 2013	480 x 600	150 / 245	20	9000	40.000	50 moulds	GJL, GJS, SSF
Pori	HWS	750 x 650	250 / 250	100	18,000	18,000	10 moulds	GJL, GJS, SSF
Högfors	HWS	1,160 x 960	350 / 350	350		34,000	20 moulds	GJL, GJS, SSF, ADI
Suomivalimo	Furan handmoulding	MAX 2,600 x 3,600	MAX. 2,500	5,000		16,000	-	GJL, GJS, SSF, ADI
Netherlands						92,000		
Weert	HWS	1,250 x 850	400/400	350		36,000	15 moulds	GJL, GJS, SSF, ADI
Heerlen HWS	HWS	850 x 630	330/330	150		36,000	30 moulds	GJL, GJS, SSF, ADI
	Furan semi- automatic moulding	2,200 x 1,250	MAX. 1,600	3,500		20,000	20 tons	GJL, GJS, SSF, ADI
		2,500 x 1,750	MAX. 2,000					
Heerlen Furan		3,000 x 1,750	MAX. 1,600					
		3,300 x 2,000	MAX. 1,600					
Turkey						160,000		
	L1 +GF+	700 x 900	360/360	100	27.000	0 0 160,000	100 tons	GJL, GJS, GJV, SSF
Orhangazi	L2 HWS	1,250 x 900	400/400	300	32.000			
	L3 +GF+	700 x 900	360/360	100	32.000			
	L4 Disa 2013	650 x 535	200/370	20	9.000			
	L5 Disa 2120	850 x 650	260/400	55	16.000			
	L6 HWS	1,100 x 900	350/350	250	34.000			
	L7 HWS	1,960 x 1,260	400/400	500	36.000			22.10.20

Advanced properties of CERTIFIED SSF MATERIAL

- Superior yield strength 13 to 27% improvement
- Even 3.3 times better elongation and improved fatigue properties
- Lighter structures of component enables higher loads with same wall thickness or thinner sections
- Excellent machinability in certain cases
- Less variation in mechanical properties
- Enhanced performance in elevated temperatures
- Possible to replace Steel fabricated parts, like forgings or welded constructions

35 % WEIGHT REDUCTION - from welded steel construction to SSF casting

STARTING POINT

- Welded construction to be developed into a cast component
- Modular products for two Harvester Designs (Machine Building)

END RESULT

- 4 functions in one product compared to welded construction
- 35% weight savings
- Machining savings
- Remarkable process phase savings
- Improved and even material properties
- Excellent end product for the customer

APPLIED SOLUTION

- Design release; made by customer in close cooperation with Componenta
- Desired material: 2nd generation SSF and one ADI part

SSF Solution Strengthened Ferrite

What is HiSi / SSF ?

 HiSi / SSF : <u>High Silicon / Solution Strengthened Ferritic spheroidal graphite</u> cast iron.

- A high strength ductile cast iron quality alloyed with silicon (3.2 – 4.3 %, depending upon quality) instead of manganese and copper or tin.
- Alloying level of silicon is <u>constant per SSF-grade</u>, unlike normal ferritic-pearlitic grades, where alloying level of manganese and copper depends on casting size and geometry.
- Constant Si-level, independent of casting size and geometry, resulting in a fully ferritic matrix (max 5% pearlite) and homogeneous properties in all sections of the casting
- Improved properties are caused by solid solution strengthening of the ferrite matrix by silicon.

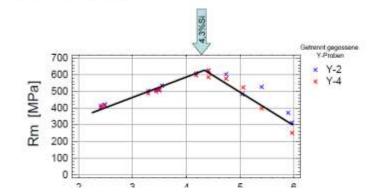
Developed in the early 90's by Volvo, Scania and Swedish Foundry institute

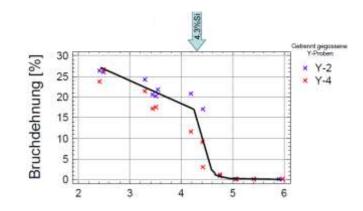
1998 - Swedish Standard, SS 140725 for grades 450-15 and 500-10

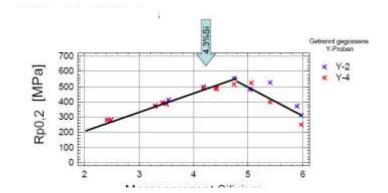
 Lower values for elongation proposed to make it more acceptable for (German) Foundries

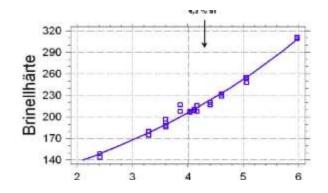
2004 - ISO 1083:2004, only grade 500-10 described

– In Normative Annex A


2012 - EN 1563:2012, 3 normative grades mentioned:


- GJS-450-18
- GJS-500-14
 - GJS-600-10 : New grade introduced, mainly developed by Componenta (Joop Kikkert) as an alternative for forged steel or +GF+ Sibodur

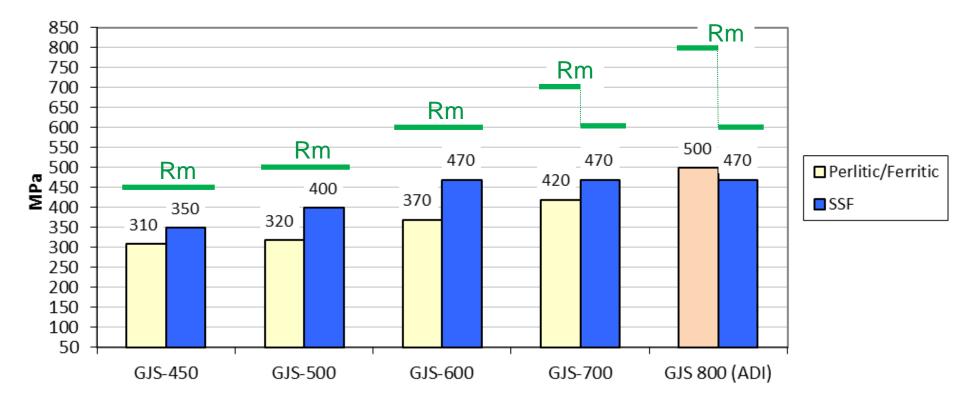



MECHANICAL PROPERTIES

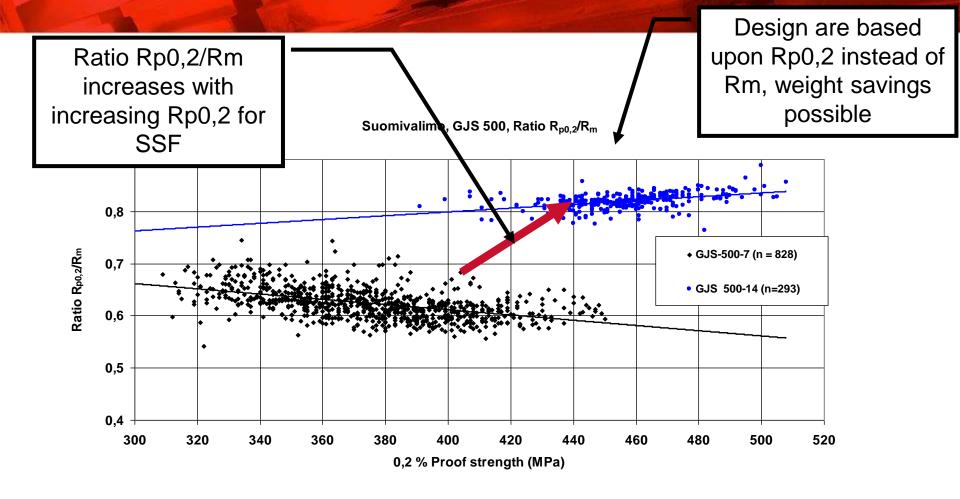
Influence of Silicon on Mechanical properties

Comparison of Mechanical Properties

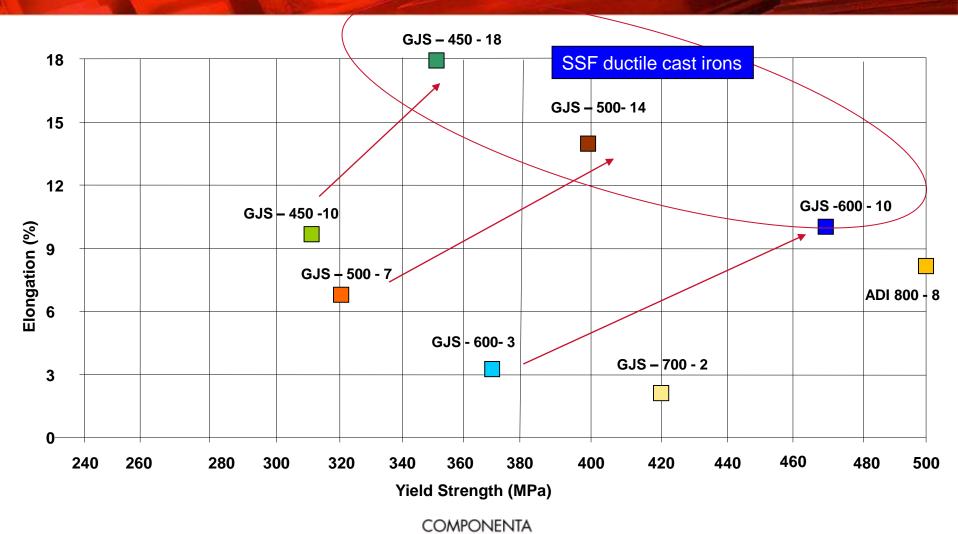
(blue row values for SSF, white normal ferritic-pearlitic grades, light pink ausferritic (ADI))


EN 1563:2012 and EN 1564:2012 - Mechanical properties measured on test pieces from cast samples (for relevant wall thickness t \leq 30 mm)

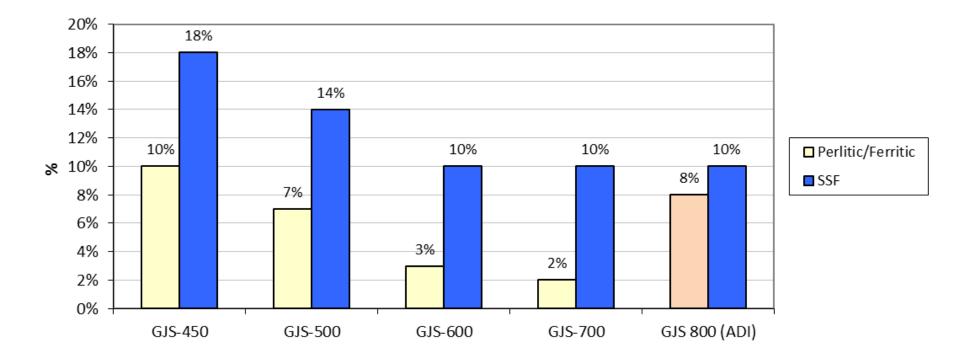
	Material Designation	0.2% proof strength	Tensile Strength	Elongation	Brinell hardness range	Modulus of Elasticity	Un-notched Impact Energy	(rotating	e limit bending) 9.6 mm)
		R p0.2	Rm	А	HBW	E	(at RT)	unnotched	notched
Similar		Мра	Мра	%		kN/mm2	J	Мра	Мра
CAT Spec		min.	min.	min.			min.	typical	typical
1E1477	EN-GJS-400-18-LT	240	400	18	130-175	169	120	195	122
1E0356	EN-GJS-450-10	310	450	10	160-210	169	80	210	128
1E4677A	EN-GJS-450-18	350	450	18	170-200	170	100	210	130
1E0596B	EN-GJS-500-7	320	500	7	170-230	169	70	224	134
1E4677B	EN-GJS-500-14	400	500	14	185-215	170	80	225	140
1E0596A	EN-GJS-600-3	370	600	3	190-270	174	40	248	149
1E4677C	EN-GJS-600-10	470	600	10	200-230	170	70	275	165
1E1122	EN-GJS-700-2	420	700	2	225-305	176	20	280	168
	EN-GJS-800-2	480	800	2	245-335	176	15	304	182
	EN-GJS-900-2	600	900	2	270-360	176	-	304	182
	EN-GJS-800-8	500	800	8	260-320	163170	110	375	225
1E1495	EN-GJS-900-6	600	900	6	280-340		100	400	240


0,2% Proof Strength vs Tensile Strength

For equal tensile strength higher yield strength for SSF

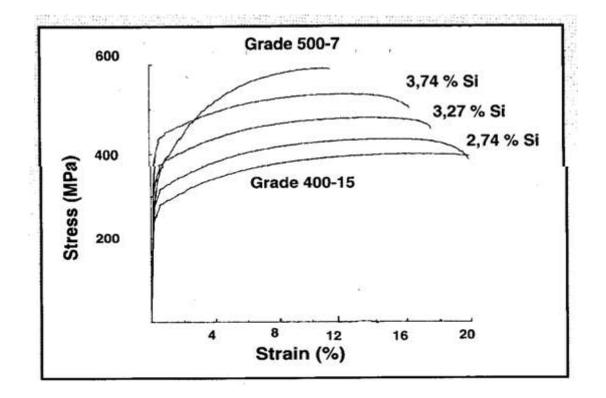

Ratio Rp0,2 / Rm for pearlitic and SSF cast iron

Elongation vs. Yield Strength


SFF Combination of high yield with high elongation

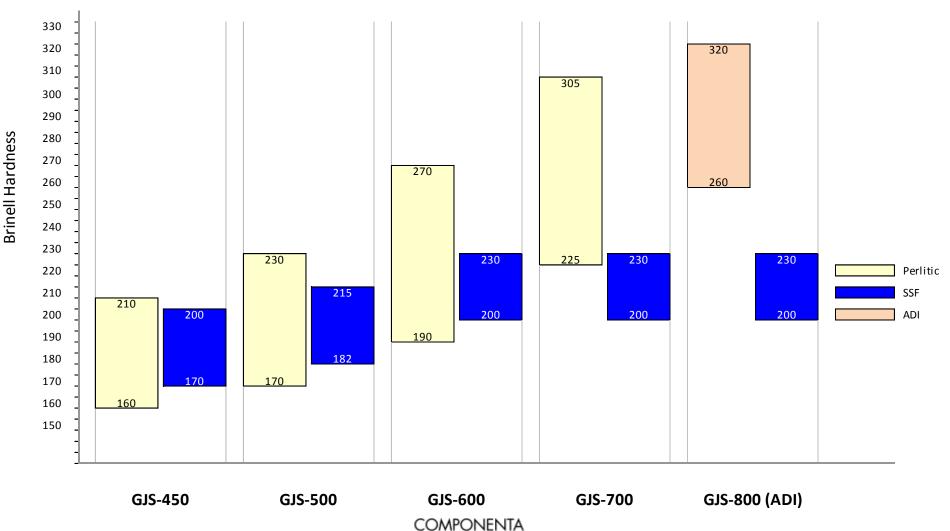
Casting Future Solutions

Elongation SSF vs Current Ductile Grades


SFF has up to 3 times higher elongation at equal strength levels

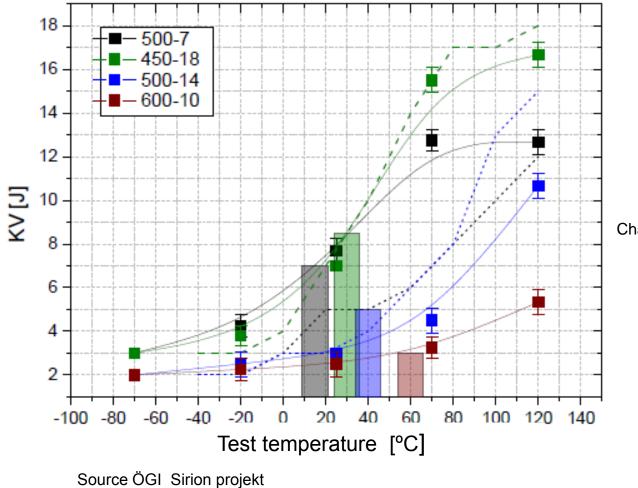
Tensile tests curves

Ferritic, SFF and ferritic/pearlitic grades

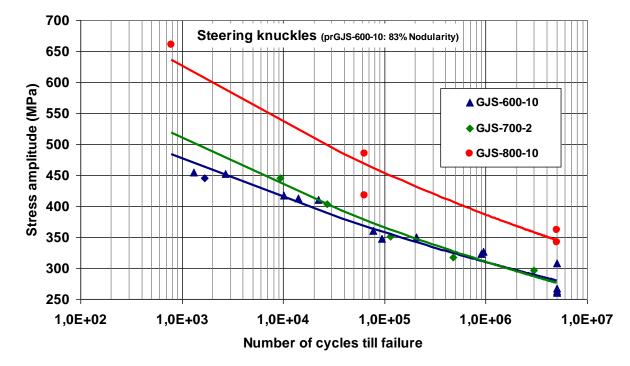


From: Björkegren and Hamberg, Ductile iron with better machinability compared to conventional grades Foudryman, December 1998, page 386-391.

Brinell Hardness


SFF shows lower average hardness and less variation in hardness, piece to piece and within a piece

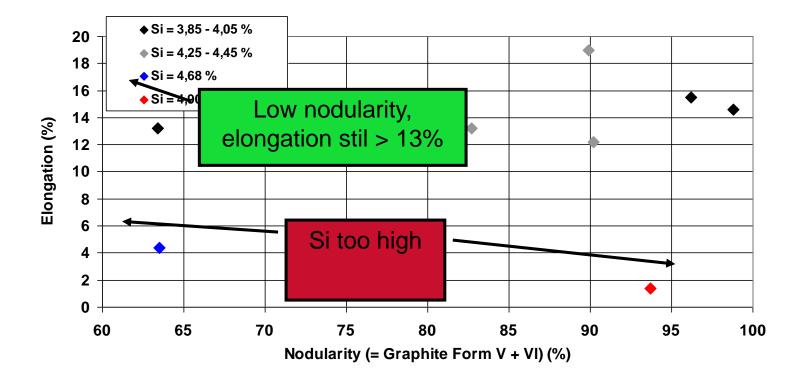
Casting Future Solutions


Comparison of Impact energy

Casting Future Solutions

Charpy V-Impact test specimen

Fatigue Strength Rotating Bending, R= -1, Machined Surface



No difference in fatique limit for SSF compared to normal pearlitic cast iron, ADI has best fatique properties for machined specimens.

Influence of Nodularity on Elongation

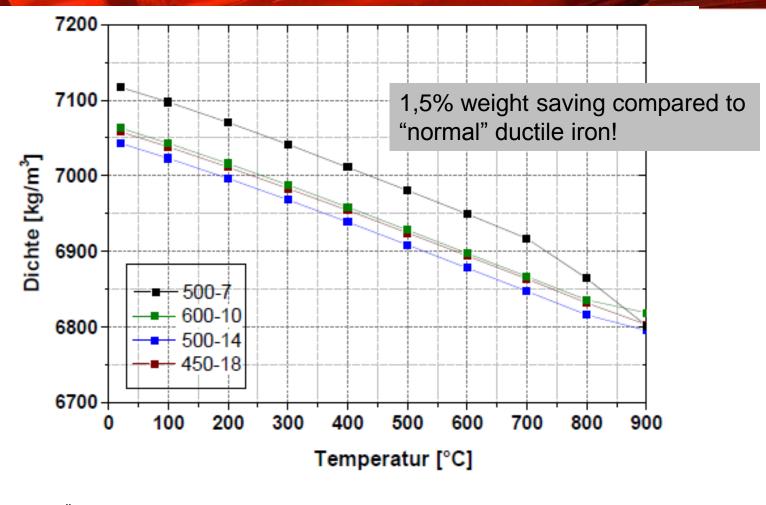
Silicon % has higher influence as nodularity

Mechanical properties SSF vs EN 10293 Cast Steels

MATERIAL DESIGNATION	YIELD STRESS MPA	TENSILE STRENGTH	ELONGATION	HARDNESS	IMPACT ENERGY*
	R _P 0,2 MPa min.	Rm MPa min.	A % min.	HBW	V-Notched at RT J
GJS 450-18	350	450	18	170 – 200	9
GE240 (+N)	240	450	17	MIN.~ 130	27
GJS 500-14	400	500	14	185 – 215	3
G20MN5 (+N)	300	480	20	MIN.~ 150	27
GJS 600-10	470	600	10	200 – 230	2 – 3
GE300 (+N)	300	600	15	MIN.~ 165	31
G42CRM04 (+QT)	600	800	12	-	31

* V-notched Charpy test samples, at room temperature. Source: EN 1563:2012 & EN 10293 N: Normalized, QT: Quenched & Tempered

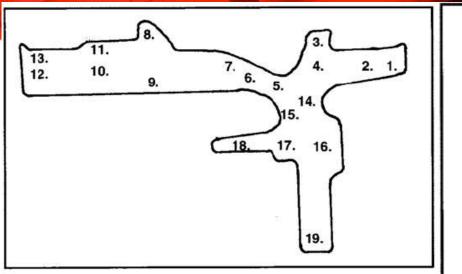
Average chemical analysis


SSF and Ferritic to Pearlitic Ductile Irons

MATERIAL DESIGNATION	С	Si	Mn	Cu
GJS 450-10	3.5 – 3.7	2.0 - 2.5	< 0.5	0.10 – 0.25
GJS 450-18	3.1 – 3.3	3.2	< 0.5	< 0.1
GJS 500-7	3.5 – 3.7	2.0 – 2.5	< 0.5	0.3 – 0.4
GJS 500-14	3.0 – 3.2	3.8	< 0.5	< 0.1
GJS 600-3	3.5 – 3.7	2.0 – 2.5	< 0.5	0.4 – 0.5
GJS 600-10	2.8 – 3.0	4.3	< 0.5	< 0.1
GJS 700-2	3.5 – 3.7	2.0 – 2.5	< 0.5	0.8 – 1.0

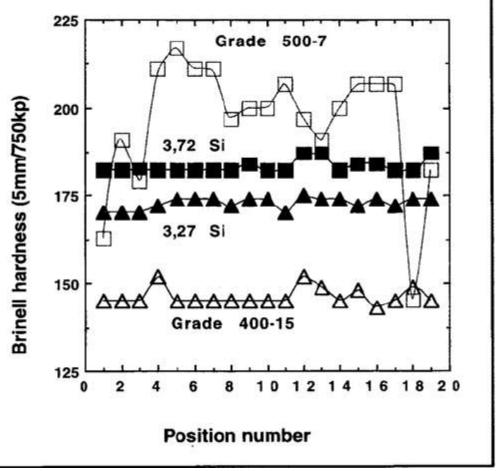
* These chemical analyses are only guidelines. The final analysis is tailored according to customers needs.

Specific density



COMPONENTA

Casting Future Solutions


MACHINABILITY

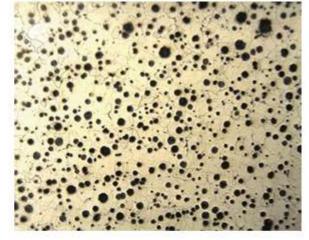
Variation of Hardness in section of Wheel Hubs

Reduced variation and lower average hardness results in 10-20 % lower machining costs

From: Björkegren and Hamberg, Ductile iron with better machinability compared to conventional grades Foudryman, December 1998, page 386-391.

Difference in metal matrix

Ferrite/pearlite matrix

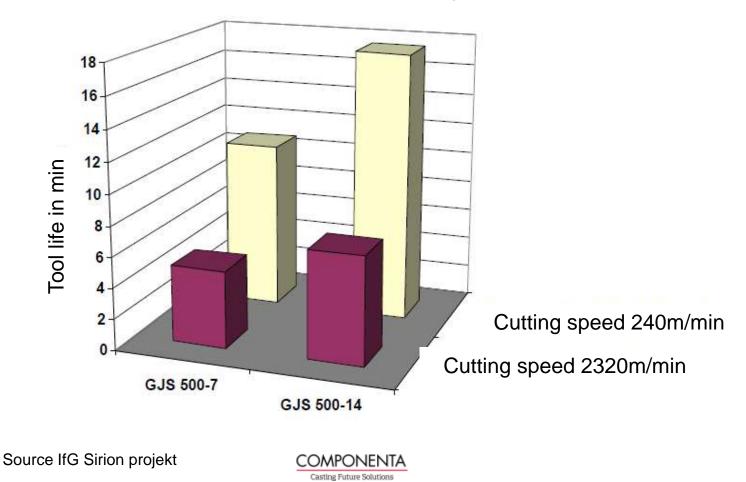


Pearlite is alpha ferrite + cementite (iron carbide)

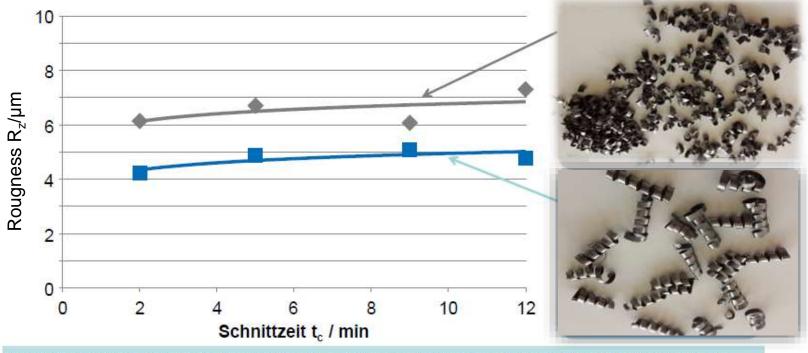
Hard + relatively soft = Interrupted cuts

Ferrite matrix

Ferrite


Better machinability

- Hardness is lower and more consistent
- Pearlite/Ferrite acts as interrupted cut


Tool Life

Tool life till 200 µm flange wear

Surface roughness

Influence of metalic matrix on surface roughness and shape of chips

Außenlängsdrehen (Standzeitkriterien: VB = 200 μ m): v_c = 320 m/min; f = 0,15 mm; a_p = 0,5 mm; Emulsion; $\kappa_r = 95^\circ$; $\alpha_o = 6^\circ$; $\gamma_{eff} = 4^\circ$; $\lambda_s = -6^\circ$; HC-K05, Beschichtung: Ti(C,N)/Al₂O₃, CNMG 120408 FN

Source IfG Sirion projekt

COMPONENTA Casting Future Solutions

SOME EXAMPLES SSF DESIGNS

Agriculture: Rear Axle

Fabricated part converted into a casting, huge cost saving, increased loads possible SSF grade: EN-GJS-600-10

Agriculture: Steering knuckle

Redesigned; reduced weight and increased load, replaces steel forging SSF Grade: EN-GJS-600-10

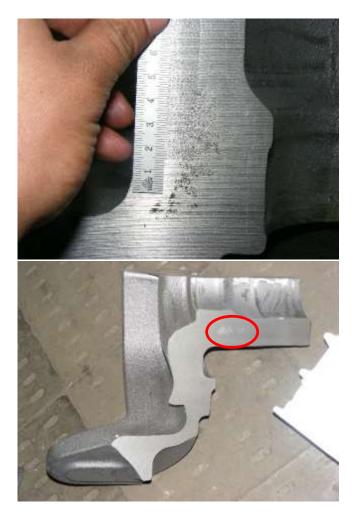
Highway Bus: Air Spring Member

Redesigned; weight saving, 8 mm wallthickness SSF Grade: EN-GJS-500-14

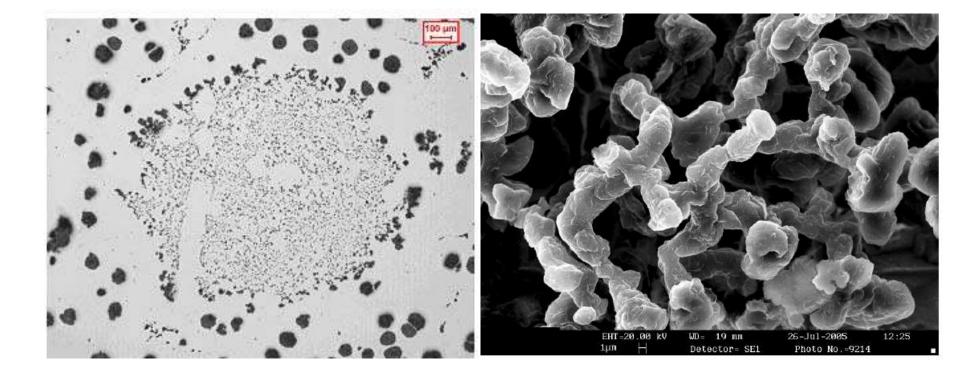
Agriculture: Support for exhaust pipe

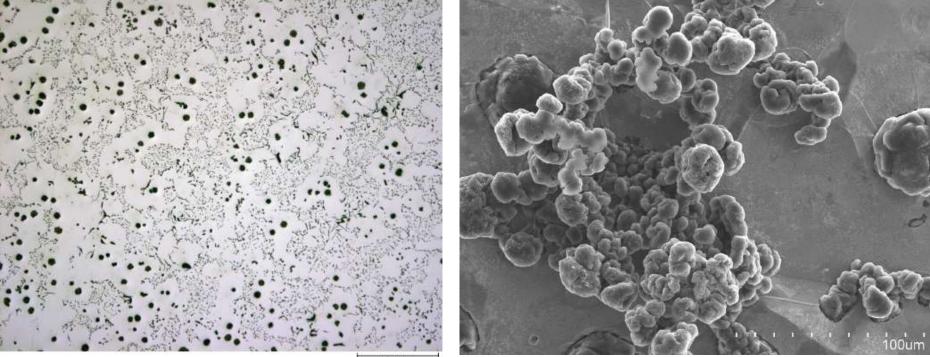
Weight saving, combining functions SSF Grade: EN-GJS-500-14

EXPERIENCES



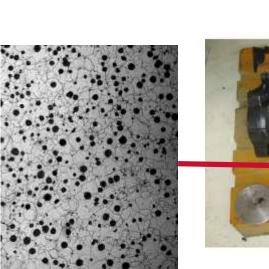
- "Imperfections"/"Discontinuities";
 - Ductile Iron → slag, porosities, nodularity
- Spectrometer
- Nodularity sample


Porosities in stub


COMPONENTA Casting Future Solutions

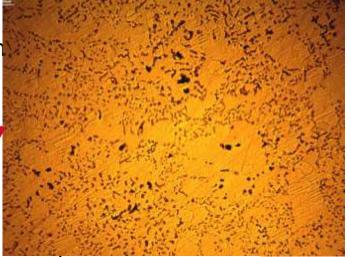
Chunky Graphite

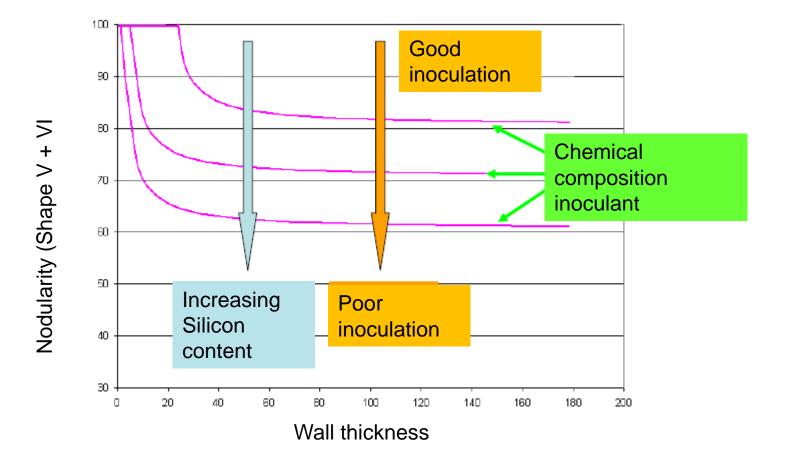
Deviation in graphite shape in SFF chain of small nodules



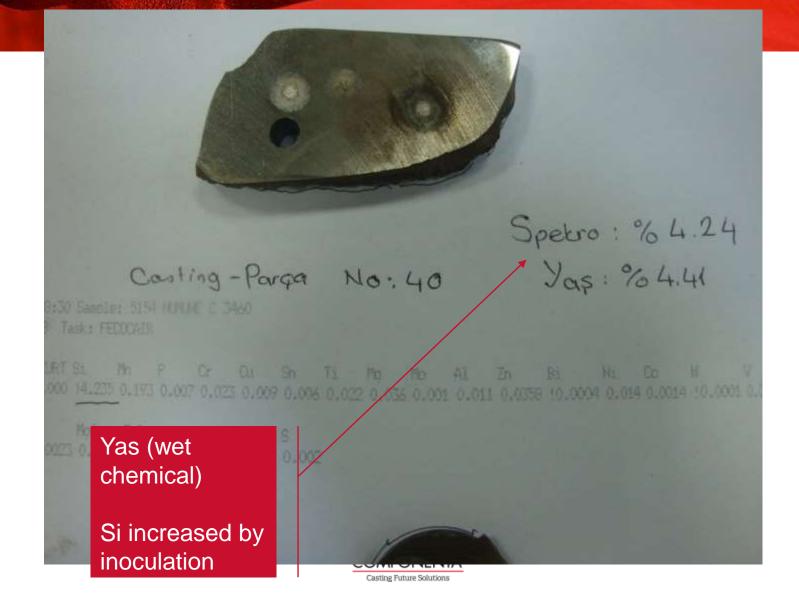
500 µm

Chunky Graphite Influenced by wall thickness


- Chunky graphite, partly due to too high Ce-con
- Measures :
 - Low Ce-containing FeSiMg
 - Addition of antimony
 - Reduced Si%



Breaking pont both parts



Influence of Inoculation on nodularity

Comparison Spectro with Wet chemical Analysis

COST IMPACT AND HOW TO ACT

How to get the most out of SSF

- Do not copy current design 100% into the new design
 - Except for test purposes to compare the SFF with current grades
- Start more or less from scratch
 - Use the better mechanical properties like
 - higher 0.2% proof strength values
 - higher elongation rates
- Think "Out of the Box"
- Work together with the supplier to optimize the casting design as early as possible

SUMMARY

Advantages of HiSi / SSF

- ✓ Higher yield strength 13 to 27% improvement
- ✓ Better elongation up to 3.3 times
 - Higher yield and better elongation can lead to a reduction of weight of the components
- ✓ Uniform metallic matrix (fully ferritic vs ferritic to pearlitic)
 - More uniform hardness distribution and mechanical properties
 - Better machinability
 - Comparable or better fatigue properties
- Not so sensitive to low nodularity, because of the solution strengthening effect
 - > 20 % of non-spheroidal graphite is accepted in EN1563

Advantages of HiSi / SSF

Less sensitive to carbide formation in thin walled sections

- Possibility to design thinner sections
- Improved weldability
- When converting from steel, a weight saving of at least to 9% due to density reduction
 - (from 7.8 kg/dm^3 to 7.05 kg/dm^3)

✓ Resulting in:

- > Up to 10% 20% weight saving possible in design
- > Up to 10% 25% lower machining costs

- No surface hardening possible
- More sensitive for chunky graphite formation (> 60 mm wall thickness)
- Base chemical composition different from other qualities of cast iron

Ferritic-to-Pearlitic matrices are <u>only</u> justified when hardness (as-cast / surface hardened) is more important than all other properties: yield strength, ductility, fatigue strength, machinability, dimensional accuracy, etc.

Casting Future SOLUTIONS

Thank you !

COMPONENTA