INCREASE IN PRODUCTIVITY AND IN CONSEQUENCE COST REDUCTION BY MEANS OF EFFICIENT TEMPERING (HEATING/COOLING)

by Karl Janisch from ROBAMAT Automatisierungstechnik GmbH., A-4810 Gmunden / AUSTRIA

- 1. Significance of tempering (heating / cooling) of dies (die casting and injection moulding)
- 2. Temperature transfer media
- 3. Preconditions for an efficient tempering
- 4. Effective heating/cooling equipment
- 5. Correctly designed tempering channels in dies
- 6. Free and clean tempering channels

 Significance of tempering (heating / cooling) of dies (die casting and injection moulding)

Responsible for:

- + Loss in heat from the cast
 - + Filling of die
 - + Solidification
 - + Life time of dies
- * Major primary malfunction source:
 A die temperature suboptimal for casting technology
 - * Faults caused by too low die temperature:
 - Poor demoulding properties (increased shrinkage forces)
 - Bad lubrication impact of the spraying agent
 - Cold lap (material overlap)
 - Wear of die (major thermal shocks)
 - Cold flow (pre-solidification)
 - Incomplete die filling

Consequence: higher scrap rate \rightarrow lower productivity

- * Faults caused by too high die temperature:
 - Extension of cycle time
 - Temporary welding of cast material
 - High consumption of spraying agent
 - Increased formation of pores caused by overuse of spraying agent
 - Increased shrinkage holes

Consequence: longer cycle time, lower product quality \rightarrow lower productivity

Advantages achievable by a tempering process:

+ Increased life time of die	Extension of tool life No tension crack No danger to overheat cores
+ Lower production costs	Shorter heating periods Less die repairs Less use of spraying agent
+ High product quality	High dimensional accuracy Clean surface Reproducible quality Thin-walled components High process stability

Tempering means:

- + HIGH PRODUCT QUALITY
- + LOWER COST OF PRODUCTION
- + HIGH PROCESS STABILITY
- → HIGH PRODUCTIVITY

2. Temperature transfer media:

Thermal fluid: Oil

Thermal fluid: Water

Oil:

- For components with thin wall thickness
- When high temperatures are required
- If the criterion of complete die filling is given

Water:

- For components with thick wall thickness
- When quick removal of energy is required
- Cycle time reduction up to 10% is achievable

3. Preconditions for an efficient tempering:

- Effective tempering equipment
 - 1. based on oil as thermal fluid
 - 2. based on water as thermal fluid
- Tempering channels sized and positioned correctly in the die
- Clean tempering channels

4. Effective heating/cooling equipment:

* based on oil as thermal fluid

Single circuit unit

Double circuit unit

	Heating	Cooling	Pu	mp	
Maximum temperature	capacity KW	capacity KW	flow rate liter/minute	pressure bar	Model
250°C (482°F)	10 / 20	20 / 40 / 60	60	6	3201 / 3212
320°C (608°F)	10 / 20	20 / 40 / 60	60	6	4201 / 4212
350°C (662°F)	10 / 20 / 30	20 / 40 / 60	80	11	5201 / 5212
350°C (662°F)	40	40	80	11	5222

Scheme of oil unit

4. Effective heating/cooling equipment:

* based on water as thermal fluid

Double and single circuit unit

Double circuit unit

	Heating	Cooling	Pu	mp	
Maximum	capacity	capacity	flow rate	pressure	
temperature	KW	KW	liter/minute	bar	Model
140°C (282°F)	6/12	35	45	6	2201 / 2212
160°C (322°F)	6 / 12	35	60	7.5	2201 / 2212
160°C (322°F)	12/18	35	80	11	2212

Scheme of water unit

Picture (interior view) of oil unit

Picture (interior view) of water unit

Efficient tempering / Karl Janisch / Robamat

5. Correctly designed tempering channels in dies

Positioning of tempering channels in the die

Basic rules for tempering channels:

- Basically it is true: The more channels the better
- Shielding of the area of die cavity by means of tempering channels.

Distance of tempering channels:

O.K.

Tempering channel distances:

E >1.5D

d approximately 3D to 5D depending on distance E

If the distance E is too small as well as with too large distance d an unsteady temperature distribution at the die contour will occur.

Oil: E >20mm, the film temperature of the oil must not be exceeded. Guideline: D=12to13, E=22to32mm

Water: E>25mm otherwise too high gradient of temperature with the result, that thermal tension as well as boiling of water are possible. Guideline: D=9to10, E=25to32mm

Calculation of required exchange area as well as required length of channel on the die:

 $Q = \alpha x A x \Delta T$ (Heat flow of convection)

- α = Heat transmission coefficient **oil** f (T, D)
 = 1,6KW / m² K at 160°C oil temperature (Mobiltherm 605)
- α = Heat transmission coefficient water
 = 3,2KW / m² K

 $\Delta T = 40K = (Toil - Twall of channel)$

$$A = \frac{Oil}{\alpha oil \times \Delta T}$$

A = 0,333m²

Water ____Q___ αwater x ΔT

<u>. 21,33KW</u> 3,2KW/m²K x 40K

0,166m²

Length of channel:

$A = D \times \pi \times L$	D = 13mm (Diameter of channel)
Oil	Water
L = <u>A</u> .	<u>. Α .</u>
D x π	D x π
L = <u>. 0,333m² .</u>	<u>. 0,166m² .</u>
0,013m x π	0,013m x π
L= 8,15m	4,08m

Efficient tempering Karl Janisch - Robamat

6. Free and clean tempering channels:

Any pollution of the tempering channels influences the temperature transfer in the die by

- * reduction of flow
- * creation of insulation layers. A layer of 1 mm causes a reduction of the temperature transfer of 30%.

The unit has been developed to

- + clean and decalcify the die tempering channels with hot water and admixture
- + check the tempering channels for leakage with hot water
- + to inspect the flow by means of a digital flow meter
- + blow completely dry the tempering channels

SUMMARY:

The tempering process has an essential influence on the productivity of the die casting as well as injection moulding process.