

Standzeitoptimierung von Aluminium-Druckgießformen

Dr.-Ing. Zurab Liluashvili

The 5th International Ankiros Foundry Congress 11-12 November 2010

Gliederung

Stand der Technik

Verschleißmechanismen an Druckgießformen

Lebenszyklus einer Druckgießform

Optimierungsansätze zur Standzeitverlängerung

Ausgewählte Ergebnisse

Zusammenfassender Bewertung

2

Stand der Technik

Bis zu 20 % der Herstellungskosten für Bauteile aus Al-Druckguss entfallen auf den Formenbau und der Formenreparatur

Probleme in den Gießereien :

hohe Oberflächengüte der Druckgussteile

Forderung der Kunden nach Maßhaltigkeit

keine Möglichkeit zur Lebensdauervorhersage

→ unerwartete Produktionsausfälle durch vorzeitigen Verschleiß/Versagen der Form

unzureichende Qualitätskontrolle beim Formenbau

Verschleißmechanismen

Häufigste Ausfallursache von Druckgussformen sind Brandrisse durch die Thermowechselbelastung

Thermowechselbelastung

- Aufbau von Zugeigenspannungen durch periodische Temperaturwechsel und mechanische Belastungen
- Elastische/plastische Verformungen
- Lokale Risseinleitung in Bereichen
 - höchster Beanspruchung
 - mikroskopischer Fehler
 - mit Spannungskonzentration

Thermowechselbelastung begrenzt die Standzeiten

The 5th International Ankiros Foundry Congress ⁵

Einflussfaktoren auf die Standzeiten

Untersuchte Formen

7

Formenbau – Fräsen

The 5th International Ankiros Foundry Congress ⁸

Eigenspannungsentwicklung – Musterung

9

Formenbau -

Wärmebehandlung

Eigenspannungstiefenprofil – Erodieren

Zugeigenspannungen liegen bis zu einer Tiefe von 150 µm vor

Ansatzpunkte zur Standzeitverlängerung

Zug- ES	GIESSFORM	Druck- ES	STANDZEITOPTIMIERUNG
+ 700 MPa	WERKSTOFF FRÄSEN		 Materialien mit hoher Warmstreckgrenze Anlassbeständigkeit
	WÄRMEBEHANDLUNG		 Anlassen
+ 810 MPa	ERODIEREN		 Qualitätssicherung
	HSC-FRÄSEN	- 900 MPa	• HSC-Fräsen statt
	POLIEREN	- 700 MPa	Erodieren
+450 MPa	MUSTERUNG		
+ 600 MPa	GIESSPROZESS		 Wärmebehandlung Neue Trennstoffe
	KUGELSTRAHLEN	- 800 MPa	 Strahlbehandlung
	REINIGUNGSSTRAHLEN	- 700 MPa	 Formenpflege

Wirtschaftlichkeitsbetrachtung durch Vergleich der Standzeiten

Standzeitversuche – Langzeittest

- gleiche Geometrie
 gleiche Beanspruchung für
 konventionelle Einsätze
- modifizierte Einsätze

Untersuchungsmethoden

Rissbeurteilung

ES-Messung

3MA-Verfahren

Metallographie

Thermographie

Optimierungsansatz - Werkstoffauswahl

Rissfortschritt - Dokumentation am Bauteil

Schädigung durch geometrisch bedingte Spannungsrisse und Erosion

7.000 Schuss

12.000 Schuss

17.000 Schuss

Formenuntersuchung nach 70.000 Schuss

Bewegliche Formhälfte

Optimierungsansatz – Werkstoffauswahl

- Schussgewicht 5600 g
- Legierung AC AlSi9Cu
- Trennstoff wassermischbar

Nest 8 • 1.2367 • kugelgestrahlt	Nest 7 Dievar unbehandelt			
Nest 5 • 1.2367 • entspannt • kugelgestrahlt	Nest 6 • Dievar • kugelgestrahlt			
Bewegliche Formhälfte				

Nest 7	Nest 8			
Dievar	1.2343			
unbehandelt	kugelgestrahlt			
Nest 6	Nest 5			
Dievar	1.2343			
kugelgestrahlt	entspannt			
	kugelgestrahlt			
Feste Fomhälfte				

Untersuchungsergebnisse - Kugelstrahlen

Schadensbild auf dem Bauteil nach 66.000 Schuss

Eigenspannungstiefenverlauf

0.000 0.010 0.025 0.040 0.070 0.100 0.140 0.220 0.300 0.380 0.490 0.580 0.670 0.074 0.820

Abstand von der Oberfläche in mm

Brandrisse nach 76.000 Schuss

Feste Formhälfte

Bewegliche Formhälfte

Abschließende Bewertung - Werkstoffvergleich

Die Fe-Co-Ni-Legierung zeigt im Vergleich zum Warmarbeitsstahl 1.2343 keine Anfälligkeit gegen Brandrisse.

Für ausschließlich brandrissgefährdete Formenbereiche sind daher mit einem nickelmartensitischen Stahl Standzeiterhöhungen zu erzielen

- Die Erosionsanfälligkeit der Fe-Ni-Co-Legierungen ist wesentlich größer als bei einem Warmarbeitsstahl, da es durch die Wärmebelastung zu einer Austenitisierung kommt
- Durch das Kugelstrahlens sind gezielt Druckeigenspannungen eingebracht worden mit einem positiven Einfluss auf die Anrissbildung bei Spannungsrissen.
- Ein Vergleich der kugelgestrahlten Werkstoffe untereinander zeigt eindeutig eine positive Bilanz für den nicht genormten Dievar.
- Der Werkstoffeinfluss auf die Standzeit dominiert im Vergleich zum Einfluss des Kugelstrahlens

Vielen Dank für Ihre Aufmerksamkeit!!