Salt free smelting of Aluminium scraps in the ALUmonte tilting rotary furnace

Presented at the International Foundry Congress Istanbul, October 2008

by Peter Kalkusch

ALUmonte GmbH / Austria

Product Range of ALUmonte:

- Rotary Tilting Furnaces
- Automatic Charging Machines
- Holding Furnaces, System
 - StrikoWestofen
- •ALDROS Dross Processing System
- Design of Aluminium Melting Plants
- Bag Filter Plants
- Ingot Casting Machines

Targets melting Al-Scrap

- Use of low cost scrap
- Reach the target alloy
- Low energy costs
- Low oxygen costs
- No / low costs for salt
- More yield, less oxidation
- Lower melting costs
- Low landfill costs
- Low emissions in environment

- Problems with available aluminum scrap
 - -Variety of 40 types with metal contens from 40 95%
 - -Oil and grease
 - -Impurities and coatings
 - Oxides
 - Biological contamination
 - Trace elements (iron inserts)

How does ALUmonte handle these problems?

- Hydrocarbons provide additional energy input
- Iron inserts will not be dissolved
- Salt free / low salt melting by means of a patented process
- High yield even with poor scrap quality

Features

- > Rotary furnace tilting to both sides
- > Burner and charging door opposite
- Deflector plate for internal post combustion
- Operation under positive pressure
- Special gas / air burner
- Tapping valve
- Permanent oxygen and carbon monoxide measurement of the furnce atmosphere by laser system
- > Oxygen injection by lances
- > Fully automatic operation by means of closed loop control
- > Unique charging machine

Interior door shield redirects burner flames to furnace interior.

RESULT: considerable fuel savings.

Internal Combustion System

Automatic Charging Machine

Closed Loop Process Control

Oxygen content
Carbonmonoxide content
Furnace temperature
Furnace pressure

Burner setting
Oxygen injection
Deflector plate
position

Targets of the new Technology (1)

Per	formance data
	Max. temperature up to ca. 1200°C
	Burner system: natural gas/air, with stepless power setting Oxygen addition by lances
	Energy consumption approx. 30-40 m ³ natural gas/ton input
	Melting capacity up to 8.0 mt/h
	Furnace capacity up to 25.0 tons
	Rotation speed adjustable from 0 to 6.0 rpm

Targets of the new Technology (2)

Oxydation loss Slightly contaminated scrap (1-2%) < 1.0% Heavily contaminated scrap 2.0 + 6.0% - Fe (3 - 5%) - Other contaminants (5-8%)

Targets of the new Technology (3)

Emission data					
		Measured value	Limit (NF Regulations)		
	Chlorine compounds as HCl	15 mg/m ³	30 mg/m ³		
	Fluorine compounds as HF	0.5 -1.5 mg/m³	5 mg/m ³		
\rightarrow	Nitrogen oxide NOx	250 mg/m ³	500 mg/m ³		
	Sulphur dioxide	100 mg/m ³	300 mg/m ³		
	Organic carbon	10-40 mg/m ³	50 mg/m ³		
	Dust	Up to 400	20 mg/m³/ Bag filter/		
		mg/m³	/required/		

Advantages of the Process

	Conventional Technology	Alumonte Technology
Oxidation Loss	4,0 - 10%	1,0 – 6,0%
Input of Salt	Saltfactor < 1	Saltfactor < 0,4
Emissions	Depends on process	Within given EU laws
Energy	50 - 80 m³ natural gas /	30 - 40 m³ natural gas /
	mt	mt /

Advantages of the Process

	Conventional Technology	Alumonte Technology
Iron pick up	High risk	No enrichment
Oxide inclusions	High risk	Low risk

Typical Installation, Slovakia

Typical installation, Hungary

Poland, DELTA 3T8

Czech Republic, Delta 3T12

Thank you for your attention