AM Solutions – High Pressure Die Casting

TUDOKSAD 2019 Koray Arslan / Uddeholm

Agenda

» Tooling Approach

» AM Approach

» AM Case Studies / Success Stories

Agenda

» Tooling Approach

» AM Approach

» AM Case Studies / Success Stories

Tooling Apporach

World leader in tool steel production and services since decades!

voestalpine

voestalpine High Performance Metals – Region International

Products & Services

Special engineering Valve steel Tool steel High-speed steel steel Powdermetallurgical Special steels Nickel-based alloys Titanium alloys materials

Tooling Apporach Products & Services – Value Added Services

Tooling Apporach

World leader in tool steel production and services since decades!

voestalpine

voestalpine High Performance Metals – Region International

Agenda

» Tooling Approach

» AM Approach

» AM Case Studies / Success Stories

Don't try to use AM for parts which are dedicated to other manufacturing technologies!

AM is only economical if you can add value to the part!

voestalpine ADDITIVE MANUFACTURING APPROACH

SOLUTION PROVIDER ALONG THE VALUE CHAIN FOR POWDERS & PARTS

Customer Consulting

Uddeholm

Voestalpine Additive Manufacturing Centre

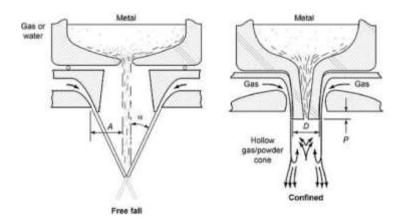
10

Uddeholms AB, Hagfors, Sweden (AM powder production)

Powder productions

Powder Production

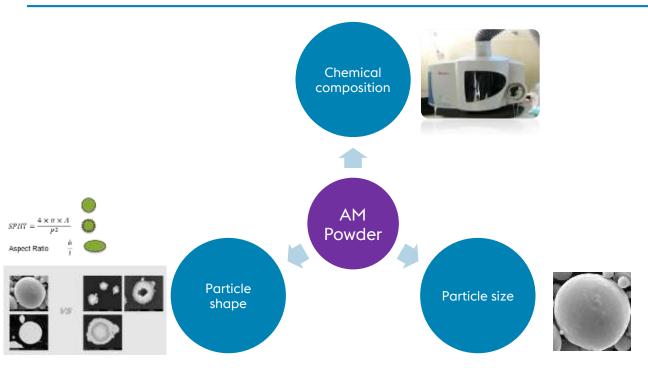
Atomizing


Powder Production

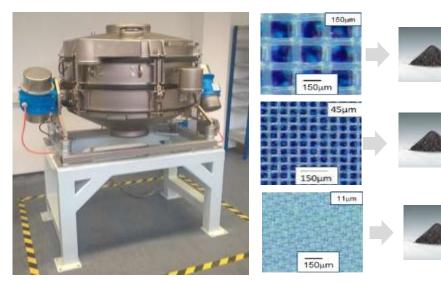
Water atomization Powder Gas atomization Quality Plasma atomization

Gas Atomization

Free fall or Close coupled (confined)



Powder Production



Powder Production

Sieving

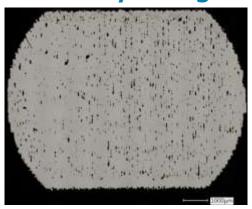
Sieving Technology

2 Step Sieving unit

different nylon sieve sizes

Powder sizes:

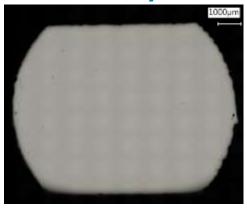
- 15 45 microns
 PBF Technology
- 45 150 microns
 DMD Technology


Powder Quality

Quality level

TECHNICAL ADVANCES – MATERIAL PROPERTIES

Several years ago



Density ~95%

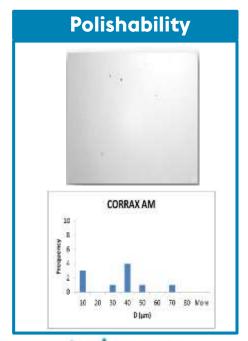
Technical progress:

- Laser technology
- **Optics**
- Software
- Efforts in R&D

Today

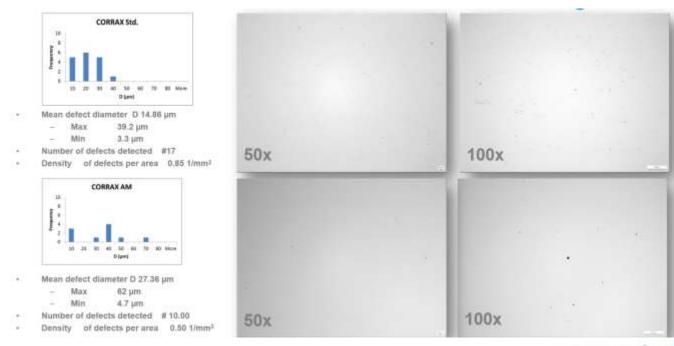
Density ~99.95%

The first AM-powder made for tooling

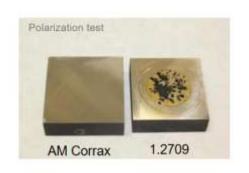

MATERIAL PROPERTIES - UDDEHOLM CORRAX

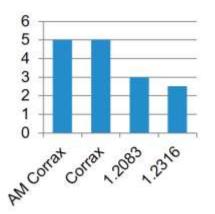
Mechanical properties					
		Modulus [N/mm²]	Yield Strength - Rp0,2 [N/mm²]	Tensile Strength - Rm [N/mm²]	
Conventional		200.000	1.600	1.700	
Σ	Built vertically	200.000	1.640	1.700	
₹	Built horizontally	200.000	1.560	1.650	

Hardness up to 50 HRC in aged condition and 7,624 g/cm3 density.


Mechanical properties similar to conventional material!

Polishability better than conventional material!!




Polishability

Corrossion Resistance

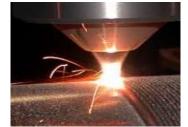
AM Corrax has the same corrosion resistance as conventionally produced material

AM Technologies

PBF and DMD

AM Technologies

Powder bed fusion 100g / hour Platform max. 400 x 400 mm


Direct Metal Deposition

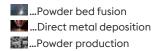
...with Powder

...with Wire

ONE STEP AHEAD.

voestalpine

AM Technologies


ADDITIVE MANUFACTURING HIGH PERFORMANCE METALS AM NETWORK

Multiple locations, markets & technologies

Comment

- AM Centers of Excellence (Innovation) centers) around the world
- Powder production in Europe
- To be close to the customer, we create a worldwide footprint for the design and production of parts
- We are focusing on both powder bed and direct metal deposition
- To build up this network, efficient, strong collaboration & know-how exchange is absolutely essential
- Additive manufacturing is an important step for the transformation from a steel-producing to a technology and capital goods producing company

28

voestalpine AM MACHINE & MATERIAL CAPABILITIES

Laser Beam Melting

EOS M290 x 8

TruPrint 1000 x 1

EOS M400 x 2

SLM 280HL x 1

Materials

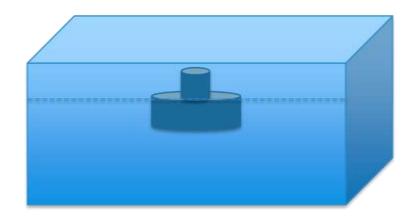
- » Heatvar
- » 1.2709
- » Corrax
- » 17-4 PH
- » Inconel 718 & 625
- » Many more

Renishaw AM400 x 1

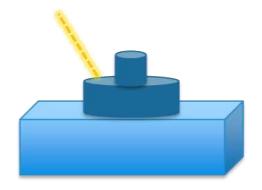
Direct Metal Deposition

TruLaser 7040 x 2

Lasertec 65 3D x 1

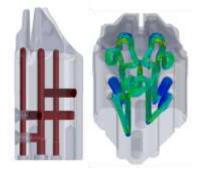

ONE STEP AHEAD.

AM Technology Setup


Software / Hardware

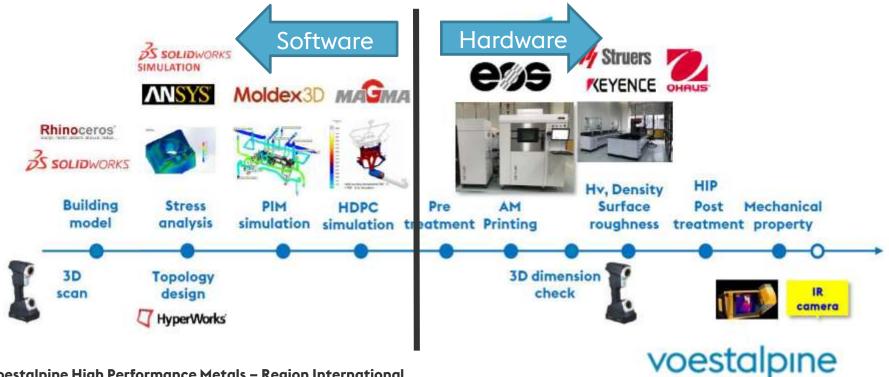
Subtractive manufacturing

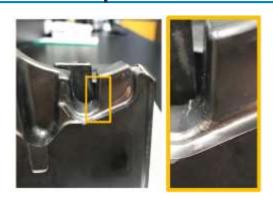
Additiv manufacturing



HYBRID MANUFACTURING

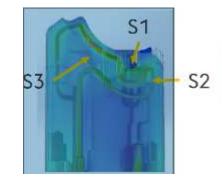
- » Reduction of the AM- volumes to functional area
- » Conventional machining of the remaining parts
- » Reduction of manufacturing costs

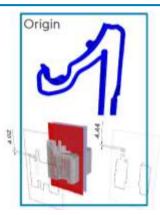


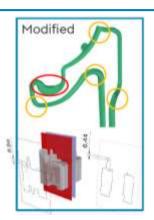

Consideration needs to be made about the combination of materials

AM Capabilities

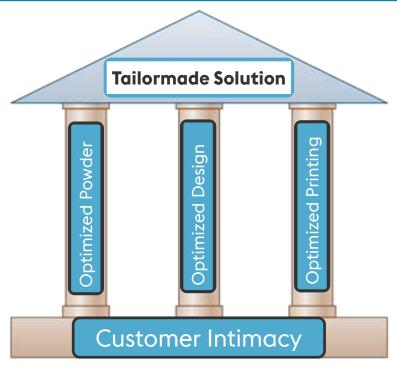
AM Optimization






1) Stress analysis

2) Optimized solution

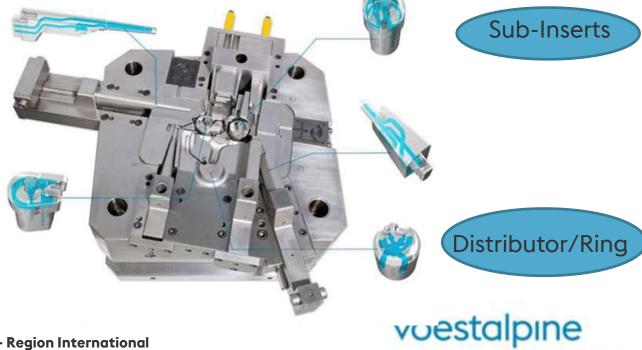


Max. Von Mises	Area		
stress, MPa	S1	52	S3
Origin	424	~550	504
Modify	337	-260	423
∆S(%)	-20%	-53%	-16%

The 3 pillars of success

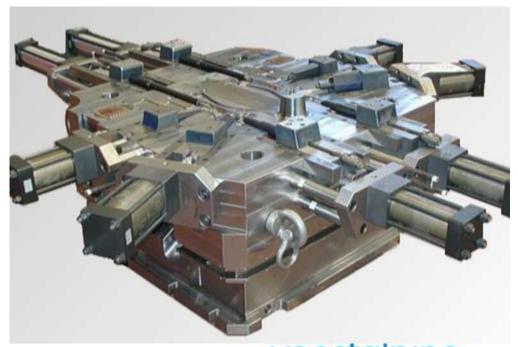
Agenda

» Tooling Approach


» AM Approach

» AM Case Studies / Success Stories

HPDC - Mold optimization with conformal cooling


Heat attacked slider

ONE STEP AHEAD.

HPDC - Performance optimization with AM

- » Scrap rate reduction
- » Part quality improvement
- » Down time reduction
- » Life time improvement
- » Maintenance optimization
- » Cycle time reduction

HPDC - Distributor

Powder Design

Simulation Heat Treat.

AM

Finishing

PVD

Powder: voestalpine

Reason for AM:

- Cycle time reduction
- Life time improvement

Performance:

Compared to conventional cooled distributor:

Cycle time: - 2,5 sec. Life time: > 200%!!

HPDC - Distributor

Powder Design

Simulation Heat Treat.

AM

Finishing

PVD

Powder: voestalpine

Reason for AM:

- Cycle time reduction
- Life time improvement

Performance:

Compared to conventional cooled distributor:

Cycle time: - 3,0 sec. Life time: > 150%!!

HPDC - Slider

Powder

Design

Simulation

AM

Heat Treat.

PVD

Reason for AM:

- Life time
- Reduction scrap rate

Application:

Clutch housing - insert

Performance:

Compared to conventional cooled slider:

>600%!

Powder: voestalpine

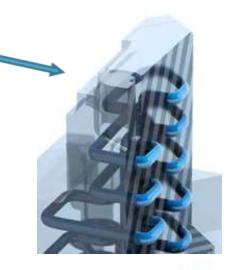
HPDC - Slider

Powder Design Simulation AM Heat Treat. Finishing PVD

Application:
Gear box – sub insert

Reason for AM:

- Reduction scrap rate
- Life time


Performance:

Compared to conventional cooled slider:

Scrap rate reduction: - 10 %

Hot Spot > 350°C Soldering problems!

Powder: voestalpine

HPDC - Sub Insert

Powder Design Simulation AM Heat Treat. Finishing PVD

Application:
Pump housing – sub insert

Reason for AM: Powder: voestalpine

- Life time
- Reduction scrap rate

Performance:

Compared to conventional cooled sub insert:

>350%!

ONE STEP AHEAD.

HPDC - Sub Insert

Powder

Design

Simulation

AM

Heat Treat.

Finishing

PVD

voesto pine

Application:
Differential housing – sub insert

Reason for AM:

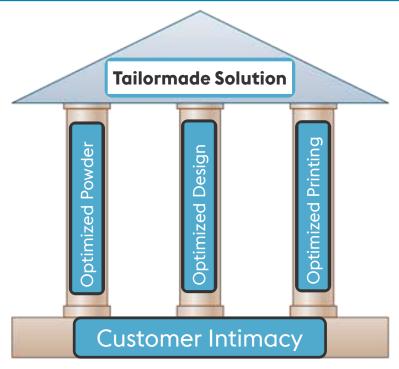
- Reduction scrap rate
- Core life time

Hybrid line

Performance:

Compared to conventional cooled sub insert:

Scrap rate reduction from 20% to 6%


Hot Spot > 370°C Soldering problems!

Powder: voestalpine

voestalpine High Performance Metals – Region International

The 3 pillars of success

voestalpine Tooling Apporach

World leader in tool steel production and services since decades!

voestalpine

voestalpine High Performance Metals – Region International

Thank you

Koray Arslan, M.Sc UDDEHOLM

