Sustainable Development Cold-Box Systems

Ankiros 2022

Dipl.-Ing. Peter Gröning | 6 October 2022

Today's agenda:

Sustainable Development Cold-Box Systems

- Demanding Business Environment
- → About Cold-Box: Types & Development
- → Emission Reduction
- \rightarrow Reduction of free Monomers
- → Conclusion

Business Environment

All at once

Global shortage in computer chips 'reaches crisis point'

Consumer price rises loom while dearth of semiconductors slow production from Samsung to Ford

Source: DW

Source: PG

Volkswagen to stop making combustion engine cars by 2035 in Europe

The German automobile giant has now set a timeline for its exit from combustion engine cars. The changes will affect Europe first, with the US and China to follow "a little later."

🛉 🗾 🚳 🖂 🕂

Source: Guardian

Key contributors and policy tools

Europe has a strong track record of **cutting emissions whilst growing its economy**. Achieving our new target of 55% greenhouse gas emissions by 2030 will require action across all sectors.

September 2020

Source: EU

Cold-Box Milestones

Traditionally innovative

Our Cold-Box Goals

Sustainable products for the future

Improvement of organic binder systems

- Reduction organic share
- Reduction free monomeres

Worldwide goal reduction of emissions The goal of HA is to support you with customized solutions

HA Cold-Box Solvent Types

Aromatic Cold-Box System Solvent: Hydrocarbon

$C_n H_{2n+1}$ n = 3 bis 14

Silicatic Cold-Box System: Solvent: Tetraethylsilicate

Aliphatic Cold-Box System: Solvent: Rapeseedmethylester

Silicatic Resin Body Sipurid System: Partly silicatic resin

Cold-Box Product Portfolio

Systematics

Development Cold-Box Systems HA

Two main adjustments

Reduction of Organics

Reduction of Monomers

Development Cold-Box Systems HA

Development Cold-Box Systems

Effects by higher proportion of inorganic share

Less carbon content through increased inorganic share

1996 | Introduction of the Bio Cold-Box System

Renewable raw material as solvent

Aliphatic Cold-Box System: Solvent: Rapeseedmethylester

Bio System: Technical Advantages

Significant improvements

Aliphatic Cold-Box System

 Reduction Catalyst consumption / Purge time
Low smell
Low sticking

1999 | Introduction of the Silicatic Cold-Box System

Solvent: Tetraethylsilicate

2008 | Introduction of Silicatic Sipurid System

Silicatic Resin Body Sipurid System: Partly silicatic resin

Standard CB vs. Sipurid Production

Different processes

Focus: Pollutant Emissions

Significant reduction of emissions

BTX emissions @ 900° C Less Benzole, Toluole and Xylole through increased inorganic share

Focus: Condensates

Low Condensate Level

- Reducing the risk of fire in extraction and piping system
- ↓ Reduced cleaning need
- Reduction of down times

Focus: Smell

Case Study Die Casting

Production Unit	Smell concentration (Smell Unit / m³) Standard CB System	Smell concentration (Smell Unit / m³) Silicatic CB System		
1	3133	770		
2	1160	253		
3	1967	1633		
4	1400	453		
5	1400	453		
6	2900	2233		
7	1967	1633		
8	2900	2233		

Case study:

Standard CB vs. Silicatic CB

Comparison of smell concentration shows significant differences.

Focus: Fume

Significant reduction of fume

19 Sustainable Development CB Systems | P. Grönung | HA Group

Development Cold-Box Systems HA

Cold-Box Systems with reduced Phenolic Content

Reduction of monomers

Standard CB vs. Low Phenol vs. Free Phenol CB

Comparison of free phenol content

Combination of Properties

Advantages

Гуре	Brand name	Example of implementation		
Aromatic	Sigmacure	Gasharz 6747	+	Sigmacure 6747 P1
CB systems		Aktivator 8989	→	Sigmacure 8989 P2
Niphatic	Biocure	Gasharz 7241	→	Biocure 7241 P1
CB systems	101	Aktivator 6324	+	Biocure 6324 P2
Silicatic	Silcure	Gasharz 6966	→	Silcure 6966 P1
CB systems		Aktivator 8431	→	Silcure 8431 P2
CB systems with	Sipurid	Sipurid 1000	→	Sipurid 1000 P1
emi silicate resin		Sipurid 2000	+	Sipurid 2000 P2

Dipl.-Ing. **Peter Gröning** Global Product Manager Cold-Box Hüttenes-Albertus Chemische Werke GmbH Tel. +49 211 5087 223 | Peter.Groening@ha-group.com

All texts, images and other content are the property of or licensed to Hüttenes-Albertus Chemische Werke GmbH and the affiliated companies of the HA Group. Use by third parties is not permitted.

Thank you for your attention.

ha-group.com

