INNOVATIVE AND LITHIUM-FREE ADDITIVES FOR THE PRESENT AND FUTURE REQUIREMENTS OF IRON/STEEL AND ALUMINUM FOUNDRIES

Hakan Kakac, Ismail Yilmaz, ASK Chemicals

BASICS OF SAND ADDITIVES

QUICK INTRODUCTION INTO SAND ADDITIVES

Basic technical reasons for the use of sand additives

- Preventing casting defects
 - E.g., veining (often a side effect of cold box bonded cores)
- Stabilization of casting production

More reasons to use the new additive

- Substitution or reduction of special sands
- Significantly improved core box/tooling cleanliness in core production → higher productivity
- Coating free production under certain conditions
- Improved shake-out in aluminum casting
- Reduced hot tears in steel castings (PEP SET & Cold Box)

COMPARISON OF DIFFERENT ADDITVE TYPES

Almost all current existing additives are in powder form

COMPARISON OF DIFFERENT ADDITIVE TYPES

		Advantages	Challenges
0,5% - 5,0%	 Organic Additives Hardwood- / plant-based granulate Dextrine / starch 	 Good dosing properties Very effective against veining Renewable raw materials 	 Impregnated additives High gas & odor development Tooling contamination (wipe off performance) Expensive additive production
2,0% – 12,0%	 Inorganic Additives Iron oxide Ceramics Minerals 	 Low, almost no gas emissions Party, not necessary to increase the binder amount Coating-free casting possible Reduced tooling contamination 	 High addition amount High raw material cost
0,5% - 5,0%	 Hybrid Additives Organic & inorganic raw materials 	 Lower gas emissions Coating-free casting possible Low tendency to deformation Reduced tooling contamination Replacement of special sands 	Partly a difficult dosingImpact on core strength

FUNCTION OF SAND AQDDITIVES – ORGANIC ADDITIVES

- Organic components in pouring process:
- burn, carbonize and soften
- Sand grains expand into recently formed spaces
- Use of organic additives
 - Iron castings
 - Brake discs, brake caliper
 - Hydraulic parts
 - Engine blocks
- Not suitable for coating-free production
 - Few exceptions possible

FUNCTION OF SAND ADDITIVES – INORGANIC ADDITIVES

Minerals develop a pasty transition phase (sintering phase)

- Acts as a buffer against silica expansion
 - \rightarrow Increasing of hot tensile strength
 - \rightarrow Improving of thermo-elasticity
 - → Influencing wetting of the silica sand grains by the casting material
 - → Substances with a lower expansion factor leads to less stress
 - \rightarrow Substances with high thermal conduction
- Very suitable for
 - Steel, brass & iron
 - Turbo charger
 - Engine blocks
 - Hydraulic parts
 - Coating-free production possible

FUNCTION OF SAND ADDITIVES – HYBRID ADDITIVES

Hybrid additives =

organic + inorganic raw materials

- Suitable for
 - Iron, steel
 - Brake discs, brake caliper
 - Hydraulic parts
 - Engine blocks
 - Cylinder heads
- Coating free production possible
- \rightarrow Best of both additive types

WHICH IS THE BEST ADDITIVE (AND AT WHAT AMOUNT)?

The question which is always addressed to us.

RAW MATERIAL SITUATION & NEW DEVELOPMENTS

RAW MATERIAL SITUATION - LITHIUM

- The most important inorganic raw material in additives are/were based on expensive Lithium Mineral
- Lithium is also a key component for rechargeable batteries
- E-Mobility has led a significant shortage and enormous increase in price of the Lithium (up to 5 times within 6 years)

Source: VDI Konferenz Bremen, Christian Heiselbetz

Source: Turbosquid.com

SEARCH AND SELECTION OF RAW MATERIALS

ASK has R&D for additives in Europe (Germany) & USA ASK has an own additive production, which is located in Germany

Methods of comparison:

- Chemical comparison
- Grain size comparison
- Strength comparison
- Heating microscope
- Casting comparison
 - (lab tests at ASK Hilden Casting Pilot Plant)
- Field trials in foundries

ALTERNATIVE PRODUCTS - COMPARISON VEINO ULTRA 3010 – VEINO ULTRA 3030

VEINO ULTRA 3010 = original \rightarrow contains lithium

VEINO ULTRA 3030 = lithium-free alternative

VEINO ULTRA 3030

Casted at the ASK Pilot Plant in Hilden GJL, uncoated, 1420° C

ASKCHEMICA

HIGH PERFORMANCE PRODUCTIVITY

104

Objectives

- Low-addition quantities
- Good anti-veining effect
- Very good sand flowability ensuring optimum contour accuracy
- Improved core box cleanliness as compared to standard sand mixtures reduced tool downtimes!
- Reduction / substitution of special sands
- Additive composition: ideally inorganic or hybrid
 (lithium-free)

Location	Germany
Capacity:	Approx. 170,000 MT/Y
Casting material:	Grey/Ductile Iron
Casting program:	Up to 5 million cylinder blocks
Customer:	Passenger car sector

RELEASE EFFECT – VEINO ULTRA 2000 (PATENTED)

Sand sticking tendency (without any release agent)

- Silica sand
- No additive
- 0.80% binder per part
- After 20 cycles

- Silica sand
- 2% standard additive (competition)
- 0.80% binder per part
- After 20 cycles

- Silica sand
- 2% VEINO ULTRA 2000
- 0.80% binder per part
- After 20 cycles
- The integrated "release effect" ensures that considerably less material is deposited on critical points below blow tubes.
- Patented technology

After 20 cycles <u>without</u> using any release agent

Sand/resin wipe off depending on VEINO ULTRA 2000 addition

Current status

- VEINO ULTRA is implemented in serial production
- Hybrid additive (no Li) with Low addition rate < 2%
- Less resin wipe off than with standard sand mix
- Very good flowability of the core sand with good contour accuracy from the 1st core onwards
- Good anti-veining effect
- Reduction and replacement of various special sands and other sand additives possible

- Silica sand, 0.80% binder b.o.s.
- 2% standard additive (coated)

- Silica sand, 0.80% binder b.o.s.
- 2% VEINO ULTRA (coated)

Poured at ASK Pilot Plant in Hilden GJL, **coated**, 1420° C

Castings in EN-GJS, cores **uncoated** with Additive VEINO ULTRA

Brake caliper

Castings in EN-GJS, cores uncoated with Additive VEINO ULTRA

Suspension frame Uncoated with VEINO ULTRA

Castings in EN-GJS, cores **uncoated** with Additive VEINO ULTRA

Wheel part of a truck

Castings in EN-GJL, cores **uncoated** with Additive EP 4874

Housing GJL 250 120 kg

COST EVALUATION -> CASTING WITHOUT COATING

Example from an European foundry- before "energy cost explosion"

CASTING WITHOUT COATING: NEW PROJECT: AUTOMOTIVE FOUNDRY IN EUROPE

Coresand Cost Calculation

	Reference (serial production)	Project	
Material	Cost per casting(€)	Cost per casting(€)	
Silica sand new sort 2	0,00	1,86	
Silica sand new sort 1	1,31	0,00	
Reclaimed sand	1,63	1,63	
Binder Part 1	1,80	2,25	
Binder Part 2	1,74	2,98	
Standard additive	1,17	0,00	
new additive		6,37	
Coating	2,27	0,00	
Total quantity mixed (kg)			
			•
Total material costs (€)	7,5	14,2	
Dipping & Drying	9,8	0,0	•
cost per Part	19,6	14,2	~
saving per Part [€]		5,3	v
Annual saving (€/Year)		344.846	v

Even higher material costs in coresand composition,

 $\checkmark\checkmark$

 $\sqrt{\sqrt{\sqrt{}}}$

Enormous annual savings possible

REDUCTION OF SPECIAL SAND

SPECIAL SANDS & MINERALS

TYPICAL ADDITION RATIO: 30 – 100 %

Advantages:

- High efficiency against casting defects
- Hardly gas emissions

Drawbacks:

- Very high material costs
- Reclamation
- Disposal costs & Environment (Chromite)
- Negative effects on the sandsystem possible

Chromite

Fieldspar

Chamottesand

Zirconsand

Ceramic sands

Andalusite

REDUCTION & SUBSTITUTION OF SPECIAL SANDS

Description/ illustrative model

Core= 2,2 kg

Casting= 12 kg

100 % reclaimed

Casting parameters:

100% sand (+Additive), 1,0 % Part 1, 1,0 % Part 2 Step cone core half uncoated, half water based coating Alloy:GJL 250 Pouring temperatur:1420 \pm 5 °C

Casting height: 550 mm

100 % Fieldspar sand

100 % reclaimed sand + 5% Veino Ultra 3030

REDUCTION & SUBSTITUTION OF SPECIAL SANDS

Core with pure silica sand & additive VEINO ULTRA

Cylinder head – water jacket cores Standard production with > 70% special sand

Silica sand and additive

COST EVALUATION SPECIAL SANDS

Sand & additive costs = with max. additive addition rate!

ASKCHEMICAL

* Higher bulk density of Chromite sand & Zircon sand is considered

COST EVALUATION SPECIAL SANDS

Product	Cost with special sand [€/Y]	Cost w/o special sand [€/Y]
Special sand	~ 800.000	-
Silica sand	-	~ 30.000
Additive	-	~ 60.000
Total costs for core molding material (w/o binder)*	~ 800.000	~ 90.000
Savings	~710.000 €/Y	′ear

Example from an European foundry

SAVING PROCESS COSTS

SAVING PROCESS COSTS

Less cracks & erosion in steel castings with Additive VEINO ULTRA RS 4

Initial Situation

- Cold Box core
- Silica sand
- Additive
- Uncoated

Topics

- Sand erosion
- Hot Tears

VEINO ULTRA RS 4

- Practically no erosion
- Up to 50% less Hot Tears
- Patented additive

SAVING PROCESS COSTS

Less cracks & erosion in steel castings with Additive VEINO ULTRA RS 4

Initial Situation

- Polyurethan-Isocyanat NoBake
- Silica sand

Hot Tears

- Chromite sand
- Black Iron Oxide as additive

Topic

• coated

NOW: VEINO ULTRA RS 4

- 60-80% less welding costs
- Patented additive

ADDITIVES FOR ALUMINUM

ALUMINUM CASTING: BETTER SHAKE-OUT

Objectives

- Improvement of shake-out with cold box bonded cores
- Low addition rate
- Additive formulation = inorganic

ALUMINUM CASTING: BETTER SHAKE-OUT

Shake-out improvement test

*Deliberately high addition rate (2,6 % in total) of binder to provoke bad shake out

ADDITIVES FOR ALUMINUM AUTOMOTIVE FOUNDRIES ISOSEAL 1010 (FOR COLD BOX)

 Shakeout improvement on cold box bonded cores after casting by approx. 40 %

Small quantities added; on average 1% additive.

Customer statements/observations:

- Reduction of condensate formation in the SPM
- Less residual dirt in the casting
- Coating sometimes not necessary
- ✓ Fewer gas defects
- Increase of the pH-value of the reclaimed sand

EXAMINATION WITH TÜRKISH SAND

SAND COMPARISON GERMAN & TÜRKISH SAND

SILICA SAND	FROM GERMANY	FROM TÜRKIYE	FROM TÜRKIYE	FROM TÜRKIYE	
PART 1 [%]	0,80	0,80	0,80	0,80	
PART 2 [%]	0,80	0,80	0,80	0,80	
Additive	without	without	EP 4874*	VEINO ULTRA RS 4*	
[%]			1,0	1,0	
Water based coating, Flowcup time 13.0 sec/4 mm					

EP 4874= Hybrid VU RS 4= Inorganic

CONCLUSION

FINAL CONCLUSION

Additives are High Tech Products

THANK YOU FOR YOUR ATTENTION. DO YOU HAVE QUESTIONS?

ASK Chemicals 2022